azul

Optimizer Hub Documentation

Table of Contents

About Optimizer Hub 1
Interaction Between OptimizerHuband JVMs. 1
About Cloud Native Compiler 2

JIT Optimization 2
Falcon JITWith CNC e 3
About ReadyNow Orchestrator. i 4
Key Strengths of ReadyNow Orchestrator 4
Video Introduction of ReadyNow Orchestrator 4
Optimizer Hub Architecture Overview 5
Architecture OVerview.)
Deployment OVerVIEW o 5
High Availability of OptimizerHub. 6

Optimizer HubRelease Notes 8

Optimizer HUD 1.1T1.0. e e 8
New Features. 8
BUG FIXES . .o 9

Optimizer HUb 1.10. 1. 10
New Features.o 10

Optimizer HUb 1.10.0. e 10
New Features. 10
BUG FiXeS . .o 11
KNOWN ISSUES 11

Optimizer HUb 1.9.5. 11
New Features. 12
Default ConfigurationChanges 12

Optimizer HUb 1.9.4 12

NEW FeAtUIES. e e e e e e e e e e e e e e e 12

BUG FIXeS . ..o e 12

KNOWN ISSUE.o 13
Optimizer HUb 1.9.3 13
New Features. 13
BUG FIXES . . 13
KNOWN ISSUE. . . .o 13
Optimizer HUb 1.9.2. 14
New Features. 14
KNnOWN [SSUE.o e 14
Optimizer HUb 1.9.T 14
New Features. 14
Optimizer HUb 1.9.0. 15
New Features. 15
BUG FIXeS . ..o 16
Optimizer HUb 1.8.2. 17
New Features. 17
Optimizer HUb 1.8.1 17
New Features. 17
KNOWN ISSUES 17
Optimizer HUb 1.8.0. 17
New Features. 18
KNOWN ISSUES e e e 18
Cloud Native Compiler 1.7.1 e 19
New Features. 19
Cloud Native Compiler 1.7.0 e 20
New Features. 20
Cloud Native Compiler 1.6.3 e 20

NEW FeatUre. e e e e e e e e e e e e e e 20

Cloud Native Compiler 1.6.2. e 20

New Features. 20
Upgradeo 21
Cloud Native Compiler 1.6.1 e 21
New Features. 21
BUG FIXES . . 21
KNOWN ISSUESo e e 21
Cloud Native Compiler 1.6.0. e 22
NeW Features. 22
BUG FIXES . .. 22
KNOWN ISSUES 22
Cloud Native Compiler 1.5.0. e 22
New Features.o 22
KNOWN ISSUES e 22
Cloud Native Compiler 1.4.0. e 23
New Features. 23
KNOWN ISSUES 23
Cloud Native Compiler 1.3.0. e 23
New Features. 23
KNOWN ISSUES e e 23
Cloud Native Compiler 1.2.0. e 23
New Features. 23
Cloud Native Compiler 1.1.0. o e 24
New Features. 24
KNOWN ISSUESo 24
Cloud Native Compiler 1.0.0. e 24
New Features. 24

Optimizer Hub Installation Instructions. 25

Installing OptimizerHub 25
Supported Platforms 25
Load Balancing 25
Supported Kubernetes Environments. 26

Installing Optimizer Hub on Kubernetes 27
OptimizerHub Helm Charts. 27
Installing OptimizerHub. 27
Cleaning Up . ..o 30

Installing Optimizer Hub on AWS Elastic Kubernetes Service 30
Configuring AWS S3 Storaget 30
Installing Optimizer HUbOnEKS 34
Setting Up an External Load Balancer. 36
Cleaning Upo 37

Installing Optimizer Hub on Microsoft Azure 37
Configuring Azure Blob Storage 37

Installing Optimizer Hub on Google Cloud 38
Configuring GCP Blob Storage. 38

Installing on an S3 Compatible Environment 40
Configuring Storage o 40
Configuring Compile Broker. 40
Configuring Gatewayot 41
Configuring Cache. 41

Installing Optimizer Hub on Minikube 41
Installing Minikube 42
Installing OptimizerHub. 42
Uninstalling Optimizer Hub from Minikube 44

Upgrading Optimizer Hub 44

Rolling Back to a Previous Version i 45

Configuring Optimizer Hub 45
Optimizer Hub Generic Defaults. 45
Management Gateway Parameters. i 45
Cross-Region Sync Parameters. i 46
Blob Storage Auto Cleanup Parameters.......... 46
Simple Sizing Parameters 46
SSL Parameters. 46
Storage Parameters 46
Using Externally Defined Secrets 47
Defining Your Secrets 47
Configuring the Active Optimizer Hub Services 49
Install Only ReadyNow Orchestrator. 50
Disabling Cloud Native Compiler on a Full Optimizer Hub Installation.......... 50
Configuring Optimizer Hub Host 50
Host for Single Optimizer Hub service 50
Host for High Availability and Failover 52
Configuring ReadyNow Orchestrator. 52
Duration Configuration 53
Configuring Cross-Region Synchronization of Profiles. 53
ReadyNow OrchestratorDefaults 54
Configuring Blob Storage Auto Cleanup i, 57
CodeCacheCleanup. e 58
ReadyNow Profile Log Cleanup. i 58
Configuring Optimizer Hub SSL Authentication............................... 60
SSL Configurationin OptimizerHub 60
SSL Configuration forClients. 62

Configuring Prometheus and Grafana. 63

Prometheus Configuration Instructions 64

Grafana Configuration Instructions. 66
Sizing and Scaling your Optimizer Hub Installation......................... ... 66
Service Scaling 67
How OptimizerHub Scales 67
Scaling APl ... 69
JVM Connections to OptimizerHub. 70
Connectinga JVM to OptimizerHub 70
Using Cloud Native Compiler e 70
Cloud Native Compiler JVM Options 70
Fallback to Local JIT Compilation. 72
Logging and SSL 73
Using ReadyNow Orchestrator. 73
Advantages of ReadyNow Orchestrator................ 73
Creating and Writing To a New ProfileName. 74
ReadyNow Orchestrator JVM Options 75
Registering a New Compiler Engine in Cloud Native Compiler................... 85
Auto-Uploading Compiler Engines. 86
Understanding ReadyNow Orchestrator Generations 86
Configuring Generations. i 87
Basic Profile Recording with Default Generations. 88
Capping Profile Log Recording and Maximum Generations 89
Priority of Generation Settings. 89
Detailed Information. 89
Optimizer Hub APl 89
APIMethods 90
Monitoring OptimizerHub. 90

Using Prometheusand Grafana 90

Retrieving OptimizerHub Logs 90

Extracting Compilation Artifacts. 91
Note About gw—proxy Metrics 92
Using the Grafana Dashboard. 92
OV IV W . . 92
AlerS o 93
Cloud Native Compiler e 93
ReadyNow Orchestrator. e 94
Profile Synchronization. 95
Troubleshooting OptimizerHub 96
Client VM Troubleshooting. 96
Cloud Native Compiler Troubleshooting. 100
ReadyNow Orchestrator Troubleshooting 101

KNOWN [SSUEBS o 101

About Optimizer Hub

About Optimizer Hub

Documentation for Optimizer Hub, version 1.11.0

Optimizer Hub is a component of Azul Platform Prime that makes your Java programs

start fast and stay fast. It consists of two services:

Cloud Native Compiler: Provides a server-side optimization solution that offloads JIT

compilation from Zing's Falcon JIT compiler to separate and dedicated service

resources, providing more processing power to JIT compilation while freeing your

client JVMs from the burden of doing JIT compilation locally.

ReadyNow Orchestrator: Records and serves ReadyNow profiles. This greatly

simplifies the operational use of the ReadyNow, and removes the need to configure
any local storage for writing the profile. ReadyNow Orchestrator can record multiple

profile candidates from multiple JVMs and promote the best recorded profile.

You can run both services with the default installation, or ReadyNow

Orchestrator only, depending on your use case.
NOTE

Check the Architecture Overview to understand the components within

the Optimizer Hub system.

Interaction Between Optimizer Hub and JVMs

1.

2.

3.

ReadyNow in the JVM asks ReadyNow Orchestrator in Optimizer Hub for a profile.
In the JVM, ReadyNow instructs Falcon what to compile based on the profile.

ReadyNow in the JVM sends back a new version of the profile to ReadyNow

Orchestrator in Optimizer Hub.

Falcon in the JVM asks the Cloud Native Compiler in Optimizer Hub to compile the

code (optional).

Cloud Native Compiler in Optimizer Hub sends the compiled code back to Falcon in
the JVM (optional).

https://docs.azul.com/prime/Falcon-Compiler

About Cloud Native Compiler

About Cloud Native Compiler

Cloud Native Compiler (CNC) is a component of Optimizer Hub that provides a server-
side optimization solution that offloads JIT compilation to separate and dedicated
resources. This approach provides more processing power to the JIT compilation, while

freeing your client JVMs from the burden of doing JIT compilation locally.

JIT Optimization

Thanks to CNC, organizations can achieve faster, smarter, and more cost-effective
application performance. This transforms the traditional limitations of on-JVM JIT
compilation into strategic opportunities for performance gains, cost savings, and

operational efficiency.

Enhanced Optimization Capabilities
CNC enables the use of advanced speculative optimizations that result in significantly
faster application code execution. Offloading the JIT compilation process to an external

optimizer, unlocks several key benefits:

+ Access to Better Compute Resources: Unlike traditional on-JVM JIT compilers, CNC
has access to dedicated, scalable compute resources. This allows it to execute more

sophisticated, aggressive optimizations that deliver higher performance outcomes.

+ Faster Optimization: Since the external compiler is not constrained by the
application’s runtime environment, optimizations are applied more rapidly, enabling

applications to achieve peak performance sooner.

Improved Application Performance from the Start
With CNC, applications experience a shorter warm-up period, leading to faster and more

efficient execution right from the start.

+ Immediate Performance Gains: By offloading the JIT compilation to an external
service, applications avoid the typical “slow-start” period caused by on-JVM

compilation. Applications run closer to optimal performance right after launch.

 Resource Efficiency: The application’s compute and memory resources only execute

About Cloud Native Compiler

your business logic, leading to faster response times and more consistent

performance during critical early phases of execution.

Optimized Resource Allocation and Cost Efficiency

CNC provides an opportunity to reduce wasteful resource allocation and optimize for

efficiency:

+ Resource Cost Savings: Since JIT compilation happens on CNC, JVM instances can
run with lower resource overhead, reducing operational and cloud infrastructure

costs.

+ On-Demand Compiler Resources: The resources used by CNC for JIT compilation are
provisioned only when needed, rather than being reserved for the entire lifecycle of a

process. This ensures more efficient utilization of compute capacity.

Falcon JIT with CNC

Azul Zing Builds of OpenJDK replace OpenJDK'’s C2 JIT compiler with the Falcon JIT
compiler. The Falcon JIT compiler can run different levels of optimizations, and its
upper tier of optimizations produces optimized code that can run significantly faster

than code produced by the OpenJDK C2 compiler.

Using more aggressive optimization levels requires more resources, and when using
JVM-local JIT compilers for optimization, resource tradeoffs can often lead to a choice
of lowering optimization levels in favor of improved warmup times. Cloud Native
Compiler eliminates these tradeoffs by removing JIT compilation work from individual
JVMs, and shifting the work of the Falcon JIT compiler to a separate shared service.
This shift of work and associated resources allows the Cloud Native Compiler to apply
even the most aggressive Falcon JIT optimization levels without disrupting individual
JVM behavior. The Cloud Native Compiler can bring to bear practically unlimited Falcon
JIT compilation resources when a JVM needs them, and later scale those resources
down when they are unused and unneeded. This results in JVMs that can consistently

serve higher amounts of traffic in smaller footprint.

https://docs.azul.com/prime/Falcon-Compiler
https://docs.azul.com/prime/Falcon-Compiler

About ReadyNow Orchestrator

About ReadyNow Orchestrator
ReadyNow Orchestrator is a component of Optimizer Hub that records and serves
ReadyNow profiles. This greatly simplifies the operational use of ReadyNow when using

in large fleets of containerized environments.

+ Centralized Profile Storage: You can configure your runtimes, using JVM command-
line parameters, to use ReadyNow Orchestrator for profile recording. ReadyNow
Orchestrator then records profiles from a meaningful subset of your JVMs, saving
your profiles either on Optimizer Hub's built-in storage or on your S3-like object

storage.

* Profile Training and Optimization: ReadyNow Orchestrator also takes care of
recording multiple training generations of your profile to produce the best possible
optimization profile. ReadyNow Orchestrator then picks the best profile out of all the
possible candidates and streams it to any new JVM that is configured to request that

profile.

+ Providing Profiles to JVMs: ReadyNow Orchestrator automatically serves the best

profile to newly started JVMs.

Key Strengths of ReadyNow Orchestrator
* No change to your deployment profile to manually record and distribute your
ReadyNow profiles. Everything is configured with a few JVM command-line

parameters.

+ ReadyNow Orchestrator monitors your entire fleed of JVMs and picks the best

optimization profile rather than just using the profile produced by one JVM.

+ Easy streaming of profiles into and out of containers, removing the need to configure

persistent storage or bake profiles into images each time you build a new image.

Video Introduction of ReadyNow Orchestrator
¥ https://www.azul.com/wp-content/uploads/AZL106-ReadyNow-Orchestrator-Video-

https://www.azul.com/wp-content/uploads/AZL106-ReadyNow-Orchestrator-Video-AW.mp4

Optimizer Hub Architecture Overview

AW.mp4 (video)

Optimizer Hub Architecture Overview
Optimizer Hub is shipped as a Helm chart and a set of Docker images to be deployed
into a Kubernetes cluster. The Helm chart deploys different components based on the

use case.

Architecture Overview
Optimizer Hub offers two deployment options: a full installation of all components or a

ReadyNow Orchestrator-only installation.

Full Installation
In a full installation, all Optimizer Hub components are available and gateway, compile-

broker, and cache are scaled when needed.

Remarks:

« All services use one pod, except Cache uses two pods by default.

* The load balancer is either your own solution (recommended), or the optional gw-
proxy included in Optimizer Hub. See "Configuring Optimizer Hub Host" for more

info.

ReadyNow Orchestrator Only
When only ReadyNow Orchestrator is needed, a reduced set of the Optimizer Hub

components is deployed in the Kubernetes cluster.

Deployment Overview
With the default "AWS setup"’, the system is divided into three node types. Each node
has a role label used to set the affinity for the nodes. If you set up your cluster on AWS

EKS using the Azul-provided custer-provisioning, nodes are created with these labels.

https://www.azul.com/wp-content/uploads/AZL106-ReadyNow-Orchestrator-Video-AW.mp4

Optimizer Hub Architecture Overview

Make sure that the instances on which you run your Optimizer Hub on

NOTE have enough CPU to handle your requests. For example, for AWS m6 and
m7 instances can be used, and on Google Cloud Platform c2-standard-8

instances.

The nodes in a Optimizer Hub instance are as follows:

« Compile Broker - Performs JIT compilations.
o EKS nodeSelector: role=opthubserver
o System Requirements: CPU 8, RAM 32GB, HDD 100GB

+ Cache - Stores information about the JVM that the compiler needs to perform

compilations.

o EKS nodeSelector: role=opthubcache

o System Requirements: CPU 8, RAM 32GB, HDD 100GB

o There is one pod per Cache node. To scale up, create more replicas.
* Infrastructure - Provides supporting functionality.

o EKS nodeSelector: role=opthubinfra

o System Requirements: CPU 8, RAM 32GB, HDD 100GB. Make sure the disk
connection is fast (use SSD) and that the storage volume is persistent between

runs.
o The pods included in this node are:
- db
» gateway
- storage
High Availability of Optimizer Hub

Optimizer Hub is designed with High Availability (HA) as a fundamental architectural

principle:

Optimizer Hub Architecture Overview

+ The system archictecture prioritizes continuous update and service reliability.
* Built-in redundancy at multiple levels ensures business continuity.

High Availability in Clusters

HA is guaranteed inside and between clusters.

Inside a Cluster

The nodes inside the Optimizer Hub service have failover built in:

+ Automatic redistribution of workload when a node fails.
+ The system maintains full functionality even if individual nodes crash.

+ A seamless transition between nodes prevents service interruption.

Between Clusters

HA is also integrated in configurations with multiple clusters:

+ Clusters have health check endpoints to declare their readiness to accept traffic.

* You can add a DNS-based load balancer or service mesh to route the requests to the

nearest available cluster.
+ Custers can sync important information.

High Availability Configuration

Follow these recommendations to ensure High Availability (HA) of Optimizer Hub.
+ Install multiple instances of the Optimizer Hub service, for instance, one per region of
availability zone.
+ Front the Optimizer Hub service with either:
o A DNS-based load balancer (i.e. Amazon Route 53)
o Kubernetes service mesh (i.e. Istio)
o See high-availability for more info.

+ Let the clients connect to the load balancer or service mesh.

Optimizer Hub Release Notes

+ Use the health check APIs to only route requests to instances which are ready to

handle traffic.
*+ Route the requests to the Optimizer Hub service which is nearest to the JVMs.

+ Set-up cross-region-sync.

NOTE Cloud Native Compiler artifacts are not synced. These artifacts can be
easily regenerated without compromising the application performance.

Optimizer Hub Release Notes

Optimizer Hub 1.11.0
Release Date: April 7,2025

New Features
* Includes bug fixes for Optimizer Hub 1.10.1.
+ The REST API in Optimizer Hub has been improved and extended:

o Previous endpoints have moved to a new address with new data formatting and
paging.
o Attributes were added to the existing entities to provide more data.

o More information is available per JVM information.

o REST endpoints are documented based on the OpenAPI standard.

+ A new readiness endpoint /api/opthub-health/healthy is available and
replaces /g/health. You can use this endpoint to determine when it is safe to route

traffic to a newly started Optimizer Hub cluster.
Returned states:

0 200:0K

© 300 and higher: Not OK

Optimizer Hub 1.11.0

+ With the new api-methods, you can instrument Optimizer Hub to temporarily increase
the minimum number of vCPUs between a start and end timestamp. Multiple calls
can be made to this APl and Optimizer Hub will take all given timestamps and

potential overlaps into account to start and stop the extra resources.

See Sizing and Scaling your Optimizer Hub Installation for more info.

+ The Management Gateway component in Optimizer Hub is now installed by default. It

has become an essential part of any deployment as it provides the REST APls.

+ Failover to a secondary Optimizer Hub instance is improved to switch connections

back to the primary Optimizer Hub instance once it becomes available again.

See high-availability for more info.

* Azul Zing Builds of OpenJDK, version 25.02 and newer, provide a new command line
option —XX:CNCLocalFallbackOptLevelLimit=<3,2,1, 0> to define the

OptLevel for local feedback. See cloud-native-compiler-jym-options.

+ Secrets can be externally defined to allow you to manage Kubernetes secrets

independent of the Optimizer Hub configuration. See Using Externally Defined

Secrets for more info.

Bug Fixes
+ Optimizer Hub now requires you to specify enough vCores to provision at least one
Compile Broker if you have used the full installation. The minimum number of vCores
is 39. When this is not the case, one or more of the following messages can be found

in the log files:

The compile-broker's minimum replicas must be greater than 0
The gateway's minimum replicas must be greater than 0
The cache's minimum replicas must be greater than 0

* Improvement in ReadyNow Orchestrator to reduce the time before it can serve

Optimizer Hub 1.10.1

profiles during a restart of Optimizer Hub with a pre-populated storage.

Optimizer Hub 1.10.1
Release Date: March 13, 2025

New Features
* Includes bug fixes for Optimizer Hub 1.10.0.

+ Fix for a problem where cross-region syncing of ReadyNow Orchestrator got stuck
indefinitely. A better timeout implementation was added to remote calls (fetching

profiles from another region), to prevent such blocks in case of network glitches.

Optimizer Hub 1.10.0
Release Date: December 20, 2024

New Features
+ Azul Zing Builds of OpenJDK, version 24.08 introduced the new
-XX:ProfileName=<name> option that allows a JVM instance to specify a profile
name to Optimizer Hub. This name allows multiple JVM instances that use the same
profile name to share the Optimizer Hub functionality, such as the use of ReadyNow

Orchestrator profiles and Cloud Native Compiler caching.

This new feature also introduces the new command line option —xXX: +EnableRNO
that enables ReadyNow read and writes in the JVMs against ReadyNow Orchestrator,
using ProfileName asthe name for the profile log. More info is provided in

readynow-orchestrator-jym-options.

The previously used options (OptHubHost and ProfileLogName) is still supported
to existing configurations don't break. But we advise to use the new settings with

OptHubHost, EnableRNO, and ProfileName.

+ Native support for Google Cloud Platform Blob Storage is added. See Installing
Optimizer Hub on Google Cloud.

10

Optimizer Hub 1.9.5

+ MinlO has been removed from the helm chart as it is mainly intended for testing and
demos. For production, cloud-managed blob storage is recommended (configuring-
aws-s3-storage, configuring-azure-blob-storage, configuring-gcp-blob-storage, or S3-

compatible (e.g. for Alibaba)).

See configure-blob-storage for more info.

+ The database storage for Code Cache is deprecated because blob storage is the best
production-friendly option as it is more scalable, highly available, and durable. At the

same time, blob storage is simpler to maintain.

See "Optional Database Pod Configuration” if you want to keep using the database.

+ Avoid cleanup of profiles from systems with low restarts by using the last time the
JVM requesting that profile was seen alive, rather than the last time the profile was

requested.

Bug Fixes
+ Improved time-outs for Profile Sync Task. In some configurations with cross-region
syncing, the sync task could get stuck because of incorrect configurations. This has

been fixed with improved time-outs.

+ Cross-region syncing of ReadyNow Orchestrator profiles is improved to let new

instances check if a later promoted generation becomes available.

* Improved the handling of unloaded or unknown classes.

Known Issues
+ A large amount of stored data may require a significant grace period after a restart of

Optimizer Hub to avoid issues with profile download.

Optimizer Hub 1.9.5
Release Date: November 5, 2024

11

Optimizer Hub 1.9.4

New Features
* Includes bug fixes for Optimizer Hub 1.9.4.

+ Faster down-scaling to release resources that are no longer needed.

Default Configuration Changes

+ The stabilization window in the scaling configuration changed from 1 to 2 minutes.

+ On the first connection to Optimizer Hub, each JVM was getting a certain about of
compile-broker capacity allocated. This could cause a high number of compile-
brokers when many JVMs connect but don't have enough compilations. This feature

is now disabled by default.

Optimizer Hub 1.9.4
Release Date: September 16, 2024

New Features
* Includes bug fixes for Optimizer Hub 1.9.3.

* When using Optimizer Hub with AWS, you can now use an K8S ServiceAccount for S3

permissions. For more info, check out the documentation at service-accounts.

« Profile download errors, caused by any reason, are now reflected in metrics and

visible in the Grafana dashboard.

Bug Fixes

+ Improved stability of the readiness probes for the Optimizer Hub Components.

» The limit of incoming connections for single instances of the gateway (Envoy proxy)
is increased from 1024 to 3072.

* You can now configure the AWS region of S3 with the Helm value

storage.s3.region.

+ Implemented stricter data consistency validation during the upload of RNO profiles to

12

Optimizer Hub 1.9.3
prevent BlobNotFound errors later.

Known Issue
+ Old Prime JVMs (pre-23.08), using an earlier protocol version, can send profile
chunks in an incorrect order. This can lead to some chunks getting lost, e.g., due to

reconnections.

+ With newer Prime JVMs, using the latest protocol, this same issue has been noticed

very rarely, and research is ongoing.

Optimizer Hub 1.9.3
Release Date: August 12, 2024

New Features
* Includes bug fixes for Optimizer Hub 1.9.2.

+ Because of configuration changes, ——set version is no longer supported during

installation using Helm.

* You can now also specify Service labels, as described in the installing-optimizer-hub

Grafana Dashboard Update

A new version of the Grafana dashboard is included in opthub-install.zip

Bug Fixes
+ Improved cleanup policy for profiles written with

continueRecordingOnPromotion to avoid profiles to grow too much.

+ Fixed a bug where MariaDB deployed with an empty password, potentially allowing
unauthorized root connections. MariaDB is now deployed with a randomly set

password.

Known Issue
* In some configurations with cross-region syncing, the sync task can get stuck

because of incorrect configurations.

13

https://cdn.azul.com/optimizer_hub/1.9.3/opthub-install-1.9.3.zip

Optimizer Hub 1.9.2

Optimizer Hub 1.9.2
Release Date: April 30, 2024

New Features

APl improvements

The APl endpoint /rno/names is extended with:

* Extra flag cncEnabled in the returned result, indicating that the creator of a profile

used or didn’t use CNC.

+ Optional request filter to define a date range.

See Overview of the APl Methods for more info.

Grafana Dashboard Update

A new version of the Grafana dashboard is included in opthub-install.zip

Known Issue

Profile Sync Running Indefinitely

The profile synchronization task may hang indefinitely if it is erroneously configured
with an gRPC endpoint URL, instead of an HTTP endpoint URL in
synchronization.peers. Please review your configuration in case you encounter

such a hang.

Optimizer Hub 1.9.1
Release Date: April 12,2024

New Features

Grafana Dashboard Update

A new version of the Grafana dashboard is included in opthub-install.zip

Configurable Minimal Client Version
Optimizer Hub can now be configured to only allow clients with a specific minimal

version of Azul Zing Builds of OpenJDK to connect to and use Optimizer Hub. By default,

14

https://cdn.azul.com/optimizer_hub/1.9.2/opthub-install.zip
https://cdn.azul.com/optimizer_hub/1.9.1/opthub-install.zip

Optimizer Hub 1.9.0

all versions are allowed. To limit, for example, to 24.02.1+, add the following setting to

your values-override.yaml:

compilations:
minVmVersionForCNCCompilation: "24.2.1.0"

Increased Number of Concurrent Recordings

The default value of
readyNowOrchestrator.producers.maxConcurrentRecordings has been
increased from 5 to 10, ensuring that enough long-lived producers are detected over

short-lived ones.

Continuous Recording

With the new flag
readyNowOrchestrator.producers.continueRecordingOnPromotion, you
can define if profiles must still be recorded after the maxGeneration has been reached.
You can use this flag for debugging purposes. See readynow-orchestrator-defaults for

more info.

Optimizer Hub 1.9.0
Release Date: February 1, 2024

New Features

Cross-Region Synchronization of ReadyNow Orchestrator Profiles
A new feature in ReadyNow Orchestrator allows you to synchronize profile names
between Optimizer Hub instances in different regions so that each instance contains at

least one promoted profile for each profile name.

See cross-region-sync-parameters for configuration options.

Database Changes
Optimizer Hub 1.9 includes an update to the Code Cache database schema. After

upgrading, Optimizer Hub dumps old Code Cache data and recreates it the next time

15

Optimizer Hub 1.9.0

you run your application.

New Location of REST APIs and ReadyNow Profile Cleaner

The REST APIs and ReadyNow Profile Cleaner moved to the new Management Gateway
component, and the APIs are now exposed on a different address. The Management
Gateway is disabled by default, see management-gateway-parameters as this

component is not required in all use-cases.

Prioritization of Profile Generations

ReadyNow Orchestrator allows you to set different minimum size and recording
durations for different generations of your profiles. Often you want to promote the first
generation of your profile as quickly as possible so new JVMs are not starting with
nothing, but you want your second generation to record for a longer time before

promotion, so it is more complete.

New configuration settings: minProfileSize, minProfileDuration,
minProfileSizePerGeneration, and minProfileDurationPerGeneration.

Check readynow-orchestrator-defaults for more info.

Grafana Dashboard
The Grafana Dashboard has been updated with more information for greater visibility

into Optimizer Hub performance.

Support for Zing Running on ARM
Optimizer Hub now supports connections from Zing JVMs running on both x86 and

ARM 64-bit machines. Optimizer Hub itself still needs to run on x86 only.

Bug Fixes
The message "Error occurred while executing task for trigger IntervalTrigger" may be
seen during initialization. This resolves automatically after some time and works as

expected.

16

Optimizer Hub 1.8.2

Optimizer Hub 1.8.2
Release Date: December 19, 2023

New Features

+ Fixes an issue in 1.8.1 where the cache component is not able to scale up.

+ Fixes an issue that caused unexpected HTTP/1.x requests for GET /g/metrics to

be reported in the logging.

Optimizer Hub 1.8.1
Release Date: December 6, 2023

New Features
Includes bug fixes for Optimizer Hub 1.8.0.

Known Issues
The message "Error occurred while executing task for trigger IntervalTrigger" may be
seen during initialization. This resolves automatically after some time and work as

expected.

Optimizer Hub 1.8.0
Release Date: September 12, 2023

As Cloud Native Compiler expands its scope to offer more functionality than just
offloading compilations, it is time to rebrand the offering to better reflect what it does.

Starting with release 1.8, we are using the following naming:

+ Optimizer Hub (was Cloud Native Compiler) - The name of the overall component

that you install on your Kubernetes cluster.

o Cloud Native Compiler (was Compiler Service) - The feature that performs the

compilation on Optimizer Hub.

o ReadyNow Orchestrator (was Profile Log Service) - The feature that records and

serves ReadyNow profiles to JVMs.

17

Optimizer Hub 1.8.0

In Optimizer Hub 1.8, all major artifacts and command line switches use the updated

branding. This includes, but is not limited to:

+ Command-line JVM options to configure Cloud Native Compiler and readynow-

orchestrator-jym-options.

+ Helm repository locations, names, and parameter names:

github.com/AzulSystems/opthub-helm-charts.

+ REST API URLs.

If you are using release 1.7 and earlier, all of the previous spellings of artifacts still work.
Additionally, all of the pre-1.8 command-line arguments continue to work for a period of

one year from the release of 1.8.

New Features
+ Monitoring with Prometheus and Grafana is no longer included in the Optimizer Hub
Helm charts, but must be configured separately as described on Monitoring
Optimizer Hub.

* In the past, each release was bundled with the most likely JVM compiler engine. This

is no longer the cause, resulting in smaller images.

+ Session rebalancing has been improved with an (optional) Envoy proxy, or any other
gRPC-aware load balancer/ingress in your Kubernetes cluster. More information can

be found on grpc-proxy.

« Documentation has been extended with installation instructions for Google Cloud.

Known Issues

Fixed Ports for gRPC

The helm chart values contain the keys gateway.service.httpEndpoint.port
and gateway.service.grpc.port tochange the default ports 50051 and 8080. But
these values are hardcoded for the gRPC Envoy proxy, at this moment, and cannot be

changed with the mentioned helm chart keys.

18

https://github.com/AzulSystems/opthub-helm-charts
https://www.envoyproxy.io/

Cloud Native Compiler 1.7.1

Cloud Native Compiler 1.7.1
Release Date: June 30, 2023

New Features
« Profile Log Service now stores profile metadata in the blob storage. This means that
you can use AWS S3 or Azure Blob Storage to persist profile metadata and no longer
need to back up the database pod with persistent storage. This change also means
that when you upgrade from any release prior to 1.7.1 your previously collected

profiles are no longer available.

o Because of this change, the db component (MariaDB) is no longer needed when

running CNC in Profile Log Service-only mode.

+ Profile Log service automatically cleans-up unused profile names when not
requested for a defined time. You can configure the duration with
profilelLogService.cleaner.keepUnrequestedProfileNamesFor. See

readynow-orchestrator-defaults for more configuration information.

* New version of the Grafana monitoring dashboard with additional charts, and

updates related to changes in the metrics reported by CNC components.

VMs connected VM roundtrip time Server CPU utilization P CPU usage by component

353 ps

compile-broker gateway cache

Time to Clear Optimization Backlog

Compilation Queues VMs / CNC

* You can define the profile log name with a Java property specified in the command

ling, in the format $prop={PROPERTY}% . For more info, see substitution-macros.

19

Cloud Native Compiler 1.7.0

+ Improved setup for Profile Log Service-only deployment.

+ CNC can automatically recover from DB pod restarts with loss of schema. To enable

this feature, set the following value in values-override.yaml:
dbschema.auto-recreate.enabled=true

* The hostPort attribute is no longer required and included for the storage pod.

Cloud Native Compiler 1.7.0
Release Date: May 3, 2023

New Features

* Improved performance of autoscaling for the Compiler Service.

+ Usability improvements to the Profile Log Service Admin REST API.

* Native blob storage on Azure and AWS. Extra documentation is provided on:
o configuring-aws-s3-storage
o configuring-azure-blob-storage

+ Added documentation of the CNC API.

Cloud Native Compiler 1.6.3
Release Date: May 24, 2023

New Feature
Fix to prevent the storage pod from crashing with persistent volume enabled on CNC
1.6.2.

Cloud Native Compiler 1.6.2
Release Date: April 27,2023

New Features

20

Cloud Native Compiler 1.6.1

* The CNC helm charts now use full names for the Docker images to prevent issues in

environments where a Docker Hub mirror is used.

* CNC pods can now be run as non-root user. The Docker images have a non-root user

and the Helm chart is instructing Kubernetes to use this non-root user for CNC pods.

Upgrade

Follow the steps described on "Upgrading Cloud Native Compiler”.

Cloud Native Compiler 1.6.1
Release Date: March 1, 2023

New Features
+ To avoid restarts of the Gateway pod when a large number of clients try to write

profile logs at the same time, a default limit has been configured.

+ Upgrade from version 1.6.0 can be done with a helm upgrade, as described on

Upgrading Cloud Native Compiler.

Bug Fixes
+ Gateway pod gets restarted when large number of clients try to write profile

simultaneously.

Known Issues
+ JVMs released before CNC 1.6.1 use HTTP for uploads of the compiler engine. Since
version 1.6.1, gRPC is used and the HTTP port is disabled by default in values.yaml.
Because of this, these JVMs are not able to upload their appropriate compiler engine
to CNC.

When a CNC version prior to 1.6.1 already has been used and upgraded, the older

JVMs keep working with CNC, because the upload is not needed anymore.

* The first attempt to download a previously existing profile, after CNC upgrade to

1.6.1 can fail with a timeout.

21

Cloud Native Compiler 1.6.0

Cloud Native Compiler 1.6.0
Release Date: January 30, 2023

New Features
+ Cloud Native Compiler has a new Profile Log Service. This service allows you to read
and write ReadyNow profile logs to Cloud Native Compiler. This simplifies getting
profile logs in and out of containers and other environments without persistent
storage. For more information on Profile Log Service configuration, see "Using the

Profile Log Service".

* Introduced ReadyNow-only deployment to helm charts.

Bug Fixes
* Multiple APIs failed with empty response.

+ Cache requests latency increased manifold resulting in an increase in wait time and

overall compilation duration.

Known Issues
* In case of heavy applications, if you see anomalies in TTCOB, the problem can be
resolved by increasing the number of cache pods. For more info, see

cloud_native_compiler_troubleshooting.

Cloud Native Compiler 1.5.0
Release Date: October 31, 2022

New Features

« Compiler Cache on by default.

* New Time to Clear Optimization Backlog metric in Grafana dashboard.

Known Issues
« Multiple pods can get evicted because of low ephemeral storage in a long-running

Code Cache cluster.

22

Cloud Native Compiler 1.4.0

Cloud Native Compiler 1.4.0
Release Date: July 8, 2022

New Features
+ Early access of the Compiler Cache. The Compiler Cache stores previously
performed optimizations and serves them from the cache rather than recompiling
whenever possible. Running your workloads with a Compiler Cache leads to lower

CNC CPU usage and faster warmup time.

Known Issues

« Compiler Cache is not scalable and too many connections overload the database.

« Multiple pods can get evicted because of low ephemeral storage in a long-running

Code Cache cluster.

Cloud Native Compiler 1.3.0
Release Date: May 9, 2022

New Features

+ Simplified installation and configuration with Helm charts.

Known Issues
+ ZVM-23070 - Using Cloud Native Compiler with local ReadyNow can dramatically
increase the CPU required to deliver the compilations in time. Monitor your compiler
output and look for connections being rejected and the JVM switching to local

compilation, and scale out your CNC instance accordingly.

Cloud Native Compiler 1.2.0
Release Date: February 24, 2021

New Features
+ Fallback to local JIT compilation when Cloud Native Compiler is unreachable or

underperforming.

23

Cloud Native Compiler 1.1.0

* You can now provide an existing ReadyNow profile as the input of the
-XX:ProfileLogIn={file} flag. Note that generating a ReadyNow profile using

the -xX:ProfileLogOut={file} is not supported with Cloud Native Compiler yet.

Cloud Native Compiler 1.1.0
Release Date: December 20, 2021

New Features

* Built-in monitoring stack with Prometheus and Grafana.

- JDK 17 support.

Known Issues
+ The CNC gateway is currently configured with one instance. Do not attempt to

increase the number of gateway instances.

+ Extremely slow disk I/o0 configurations (with latencies in the multiple seconds) can
lead to internal crashes and data loss within CNC (due to Artemis crashes). Avoid

configuring CNC with pods using very slow HDD or network volumes.

Cloud Native Compiler 1.0.0
Release Date: October 15, 2021

This is the first release of Cloud Connected Compiler (CNC), and we are really excited

about it!

New Features

+ Cloud Native Compiler server able to provide JIT compilations to Azul Zing Builds of
OpenJDK 12.09.1.0 and later.

+ Configuration files to provision an AWS Elastic Kubernetes Service cluster for your

CNC server.

+ A sample Grafana dashboard for monitoring your CNC server.

24

Azul Platform Core Third Party Licenses

Azul Platform Core Third Party Licenses

This page contains links to the documents with licenses for third party software

included in Optimizer Hub.

Version Optimizer Hub TPL
1.11.0 PDF
1.10.1 PDF
1.10.0 PDF
1.9.5 PDF
194 PDF
1.9.3 PDF
1.9.2 PDF
1.9.1 PDF
1.9.0 PDE

Optimizer Hub Installation Instructions

Installing Optimizer Hub
Optimizer Hub is shipped as a Kubernetes cluster which you provision and run on your

cloud or on-premise servers.

Supported Platforms
Optimizer Hub is available for x64 platforms only, however, supports connections from
Zing JVMs running on both x86 and ARM 64-bit machines.

Load Balancing
It's recommended to use a load balancer or service mesh to set up a high-availability
system, optionally with a secondary fallback system. JVMs connecting to Optimizer

Hub need a stable, single entry point to communicate with the service.

25

/optimizer-hub/tpls/optimizer_hub_1.11.0_tpl.pdf
/optimizer-hub/tpls/optimizer_hub_1.10.1_tpl.pdf
/optimizer-hub/tpls/optimizer_hub_1.10.0_tpl.pdf
/optimizer-hub/tpls/optimizer_hub_1.9.5_tpl.pdf
/optimizer-hub/tpls/optimizer_hub_1.9.4_tpl.pdf
/optimizer-hub/tpls/optimizer_hub_1.9.3_tpl.pdf
/optimizer-hub/tpls/optimizer_hub_1.9.2_tpl.pdf
/optimizer-hub/tpls/optimizer_hub_1.9.1_tpl.pdf
/optimizer-hub/tpls/optimizer_hub_1.9.0_tpl.pdf

Installing Optimizer Hub

It's recommended to use your own load balancer and configure the DNS of the system
that must be used by the JVMs to connect. See load-balancer and the "Readiness

(healthy) API". If no load balancer is available, you can use the optional gw-proxy.

Benefits of a Load Balancer
A load balancer provides this external access point while also potentially offering

benefits like:

+ SSL configuration in the load balancer

Traffic distribution across Optimizer Hub components

High availability

Network isolation

Consistent endpoint for clients regardless of internal pod IP changes

Load Balancer Requirements
+ The load balancer must be an application-level load balancer, i.e., it must understand
the gRPC protocol (which is built on top of HTTP/2) and load balance each gRPC

request independently.

+ The load balancer may not limit the duration of gRPC calls. Optimizer Hub uses
streaming gRPC calls, which can last for hours, days, or how long the VM stays alive.

These long-lived calls may not be considered as an error and may not be killed.

Supported Kubernetes Environments
You can install Optimizer Hub on any Kubernetes cluster:
+ Kubernetes clusters that you manually configure with kubeadm:
o "Installing Optimizer Hub on Kubernetes"
+ Managed cloud Kubernetes services such as:
o "Amazon Web Services Elastic Kubernetes Service (EKS)"

o "Google Kubernetes Engine"

26

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/

Installing Optimizer Hub on Kubernetes

o "Microsoft Azure Managed Kubernetes Service"
+ A single-node minikube cluster:

o "Installing Optimizer Hub on Minikube"

NOTE By downloading and using Optimizer Hub, you agree with the Azul
Platform Prime Evaluation Agreement.

Installing Optimizer Hub on Kubernetes

Optimizer Hub uses Helm as the deployment manifest package manager. There is no
need to manually edit any Kubernetes deployment manifests. You can configure the
installation overriding the default settings from values.yaml in a custom values file.

Here we refer to the file as values-override.yaml butyou can give it any name.

This section assumes you have set up a load balancer or services mesh
NOTE to handle SSL. If not, see "Configuring Optimizer Hub with SSL

Authentication".

You should install Optimizer Hub in a location to which the JVM machines have
unauthenticated access. You can run Optimizer Hub in the same Kubernetes cluster as

the client VMs or in a separate cluster.

NOTE If you are upgrading an existing installation, make sure to check
"Upgrading Optimizer Hub".

Optimizer Hub Helm Charts

NOTE Helm is required to set up your Optimizer Hub instance.

Azul provides Optimizer Hub Helm Charts on GitHub. You can download the full

package as a zip.

Installing Optimizer Hub

These instructions are for installing a full Optimizer Hub instance with both Cloud

27

https://www.azul.com/wp-content/uploads/Azul-Platform-Prime-Evaluation-Agreement.pdf
https://www.azul.com/wp-content/uploads/Azul-Platform-Prime-Evaluation-Agreement.pdf
https://github.com/AzulSystems/opthub-helm-charts/blob/master/values.yaml
https://github.com/AzulSystems/opthub-helm-charts
https://github.com/AzulSystems/opthub-helm-charts/archive/refs/heads/master.zip
https://github.com/AzulSystems/opthub-helm-charts/archive/refs/heads/master.zip

Installing Optimizer Hub on Kubernetes

Native Compiler and ReadyNow Orchestrator. In case you only want to install the full
Optimizer Hub, but only a part of the services, see "Configuring the Active Optimizer Hub

Services".

1. Install Azul Zing Builds of OpenJDK 24.02 or newer on your client machine.

2. Make sure your Helm version is v3.8.0 or newer.

3. Add the Azul Helm repository to your Helm environment:

helm repo add opthub-helm https://azulsystems.github.io/opthub-
helm-charts/
helm repo update

4. Create a namespace (i.e. my—opthub) for Optimizer Hub.

kubectl create namespace my-opthub

5. Create the values-override.yaml filein yourlocal directory.

6. If you have a custom cluster domain name, specify it in values-override.yaml:

clusterName: "example.org"

7. If you want specific labels being added to your Kubernetes objects, define them in

your values-override.yaml, for example as follows:

gateway:
applicationlLabels: # Additional labels for Deployment/StatefulSet
podTemplatelabels: # Additional labels for POD
servicelabels: # Additional labels for Service

8. Configure sizing of the Optimizer Hub components according to the "sizing guide". By
default, autoscaling is enabled and Optimizer Hub requires 39 vCores and can scale
up to 10 Compile Brokers. For example, you could set the following in your values-—

override.yaml file:

28

https://www.azul.com/downloads/#prime

Installing Optimizer Hub on Kubernetes

simpleSizing:
vCores: 39
minVCores: 39
maxVCores: 113

9. Configure the blob storage according to your environment in your values-

override.yaml file:

storage:
Available options: s3, azure-blob, gcp-blob
blobStorageService: s3
Depending on the type of storage, configure the extra settings
833

azureBlob:

gcpBlob:

For more detailed blob storage instructions, please check:

o configuring-aws-s3-storage

o configuring-azure-blob-storage

o configuring-gcp-blob-storage

o "S3-compatible (e.g. for Alibaba)"

10. If needed, configure external access in your cluster. If your JVMs are running within
the same cluster as Optimizer Hub, you can ignore this step. Otherwise, it is

necessary to configure an external load balancer in values—-override.yaml.

For clusters running on AWS an example configuration file is available on Azul's
GitHub.

11. Install using Helm, passing in the values-override.yaml.

helm install opthub opthub-helm/azul-opthub \
-n my-opthub \
—f values-override.yaml

29

https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-awslb.yaml
https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-awslb.yaml

Installing Optimizer Hub on AWS Elastic Kubernetes Service

o In case you need a specific Optimizer Hub version, please use ——version

1.11.0 flag.

o The command should produce output similar to this:

NAME: opthub

LAST DEPLOYED: Wed Jan 31 12:19:58 2024
NAMESPACE: my-opthub

STATUS: deployed

REVISION: 1

TEST SUITE: None

12. Verify that all started pods are ready:

kubectl get all -n my-opthub

Cleaning Up

To uninstall a deployed Optimizer Hub, run the following command:

helm uninstall opthub —-n my-opthub
kubectl delete namespace my-opthub

Installing Optimizer Hub on AWS Elastic Kubernetes Service
If you are using Amazon Web Services, you can simplify the process of starting and

maintaining your cluster considerably by using the Elastic Kubernetes Service (EKS).

Configuring AWS S3 Storage

Optimizer Hub requires a bucket and R/W permissions to the bucket.

1. Within the AWS system, create the bucket and R/W permissions.

2. Configure the Optimizer Hub storage by adding the following to your values-

override.yaml file:

30

https://aws.amazon.com/eks/

Installing Optimizer Hub on AWS Elastic Kubernetes Service

storage:
blobStorageService: s3
s3:
commonBucket: opthub-storagel

3. Configure the permissions by adding the following to your values-

override.yaml file:

deployment:
serviceAccount:
annotations:
eks.amazonaws.com/role—-arn: arn:aws:iam::<...>:role/opthub-

s3-role

Using Kubernetes Nodes and Permissions
To configure AWS S3 storage, use the following configuration. Ensure that your
Kubernetes nodes with opthub—compilebroker and opthub—-gateway have RW

permissions to S3 bucket(s), and the target buckets exist.

A role with the below policy must be assigned to instances (EC2, EC2 ASG, Fargate, etc)

for the opthub—compilebroker and opthub-gateway pods.

31

Installing Optimizer Hub on AWS Elastic Kubernetes Service

"Version": "2012-10-17",
"Statement": [
{
"Action": [
"s3:ListBucket"
]I

"Resource": [
"arn:aws:s3:::opthub—*"
1,
"Effect": "Allow"
br
{
"Action": [
"s3:*0Object"
1,
"Resource": [
"arn:aws:s3:::opthub—*/*"
1,
"Effect": "Allow"

Using AWS Service Accounts
If your security practices do not allow you to give nodes access to S3 buckets, you can
also grant access to just the key services in Optimizer Hub. You can do this by

configuring AWS IAM, roles, and permissions as described in the AWS documentation.

In the next steps, Optimizer Hub assumes the role name is opthub-s3-role. The IAM
role trust relationship entry needs the following additional settings in AWS (you will

need to change the IDs in this example to align with your configuration):

32

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

Installing Optimizer Hub on AWS Elastic Kubernetes Service

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Federated": "arn:aws:iam::163957972732:0idc-
provider/oidc.eks.us—-west-—
2 .amazonaws.com/id/F7E8B430691CFE3B776B8CA663896762"
o
"Action": "sts:AssumeRoleWithWebIdentity",
"Condition": {
"StringLike": {
"oidc.eks.us-west—
2 .amazonaws.com/id/F7E8B430691CFE3B776B8CA663896762:sub":
"system:serviceaccount: *:opthub*",
"oidc.eks.us-west-—
2 .amazonaws.com/id/F7E8B430691CFE3B776B8CA663896762:aud":
"sts.amazonaws.com"

}

After creating the Service Accounts, add the following settings to your values-

override.yaml file:

deployment:
serviceAccount:
annotations:
eks.amazonaws.com/role—arn: arn:aws:iam::<...>:role/opthub-
s3-role

The Helm chart of Optimizer Hub creates the following Service Accounts:

* opthub-cache
* opthub-compile-broker
* opthub—gateway

* opthub-operator

33

Installing Optimizer Hub on AWS Elastic Kubernetes Service

Storage for ReadyNow Orchestrator

You can limit the usage of persistent storage by ReadyNow Orchestrator with the

readynow-orchestrator-defaults.

Installing Optimizer Hub on EKS
Please download opthub-install-1.11.0.zip for additional files to configure Optimizer Hub

on AWS EKS.

Cluster Requirements

You can create a cluster following the steps in Cluster Provisioning on EKS, or use a

cluster created by any other means according to these requirements:

+ ReadyNow Orchestrator requires on-demand EC2 instances. Don't use spot

instances.

+ All the nodes must have at least 8 vCores and 32 GB RAM to fit the Optimizer Hub
pods.

+ The suggested EC2 instance types are mé6 or m7 . Using instances with less powerful

CPUs may negatively impact the performance of Optimizer Hub.

Cluster Provisioning on EKS
If you don't have a cluster available to run Optimzer Hub, you can provision one on EKS

with the following steps:

1. Install and configure the eksct1 and aws command-line tools.

If you don't have permissions to set up networking components, have your
administrator create the Virtual Public Cloud.
2. Inthe downloaded package, navigate to the eks directory.

3. In opthub_eks.yaml, replace the placeholders {your-cluster-name}, {your-

region},and {path-to-your-key} with the correct values.

4. If you are working with an existing VPC and do not want eksctl to create one,

uncomment the vpc section and replace {your-vpc} and {your—-subnet} with

34

https://cdn.azul.com/optimizer_hub/1.11.0/opthub-install-1.11.0.zip
#custer-provisioning
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

Installing Optimizer Hub on AWS Elastic Kubernetes Service

the correct values.

5. Pass the modified opthub_eks.yaml fileto eksctl to create the cluster. For more

information, look at the eskctl config file schema. Apply the file with the following

command:

eksctl create cluster —-f opthub_eks.yaml

This command takes several minutes to execute, and when successful ends with the

following output:

[7] EKS cluster "eks-opthub-cluster" in "eu-central-1" region is
ready

By using opthub_eks.yaml, the following gets created in your AWS account:
+ CloudFormation stacks for the main EKS cluster and each of the NodeGroups in the
cluster.

+ A Virtual Private Cloud called eksctl-{cluster-name}-cluster/VPC. If you chose to use
an existing VPC, this is not created. You can explore the VPC and its related
networking components in the AWS VPC console. The VPC has all of the required

networking components configured:
o A set of three public subnets and three private subnets
o An Internet Gateway
o Route Tables for each of the subnets
o An Elastic IP Address for the cluster
o A NAT Gateway
+ An EKS Cluster, including four nodegroups with one m5.2xlarge instance provisioned:
© infra - Forrunning Grafana and Prometheus.

© opthubinfra - Forrunning the Optimizer Hub infrastructure components.

35

https://eksctl.io/usage/schema/

Installing Optimizer Hub on AWS Elastic Kubernetes Service

© opthubcache - For running the Optimizer Hub cache.

o opthubserver - For running the Optimizer Hub compile broker settings.
* IAM artifacts for the Autoscaling Groups:

o Roles for the Autoscaler groups for the cluster and for each subnet

o Policies for the EKS autoscaler

Install Optimizer Hub on an EKS Cluster
Follow the installation instructions on "Installing Optimizer Hub on Kubernetes" to install
all services of Optimizer Hub. Or, in case you don't want to install the full Optimizer Hub

but only a part of the services, check "Configuring the Active Optimizer Hub Services".

In the step where Helm is used to create the node groups in the cluster, pass in the
additional configuration file eks/values-eks.yaml, located in the installation
package. This file includes the nodegroup affinity settings and other settings expected
by EKS.

The Helm installation command needs to be extended with the values—eks.yaml

config file:

helm install opthub opthub-helm/azul-opthub \
-n my-opthub \
-f values—-eks.yaml \
—f values-override.yaml

When adding multiple values files, remember the last one takes precedence.

Setting Up an External Load Balancer
As described on "Configuring Optimizer Hub Host", it is highly recommend to use a load-

balanced setup.

To set up an AWS load balancer, please follow the documentation on Route internet

traffic with AWS Load Balancer Controller.

36

https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html

Installing Optimizer Hub on Microsoft Azure

Cleaning Up

Run the following command:

eksctl delete cluster —-f opthub_eks.yaml

Installing Optimizer Hub on Microsoft Azure
To install Optimizer Hub on Azure, follow the general "Kubernetes" instructions. This

document provides additional configurations specific for Azure.

Configuring Azure Blob Storage

Optimizer Hub requires a bucket and R/W permissions to the bucket.

1. Within the Azure system, create the bucket and R/W permissions.

2. Configure the Optimizer Hub storage by adding the following to your values-

override.yaml file:

storage:
blobStorageService: azure-blob
azureBlob:
endpoint: https://{yourendpoint}.blob.core.windows.net
container: {your-container}
authMethod: {method} # sas-token, connection-string, or
default-credentials

3. Configure the permissions by adding the following to your values—

override.yaml file:

o When using authMethod:sas—-token:

secrets:
azure:
blobStorage:
sasToken: "{your-token}"

o When using authMethod:connection-string:

37

Installing Optimizer Hub on Google Cloud

secrets:
azure:
blobStorage:
connectionString: "{your-connection-string}"

Storage for ReadyNow Orchestrator
You can limit the usage of persistent storage by ReadyNow Orchestrator with the

readynow-orchestrator-defaults.

Installing Optimizer Hub on Google Cloud

To install Optimizer Hub on Google Cloud, please follow the instructions on "Installing

Optimizer Hub on Kubernetes".

Configuring GCP Blob Storage

Optimizer Hub requires a bucket and R/W permissions to the bucket.

1. Within the Google Cloud system, create the bucket and R/W permissions.

2. Configure the Optimizer Hub storage by adding the following to your values-

override.yaml file:

storage:
blobStorageService: gcp-blob
gcpBlob:
commonBucket: opthub-storagel

3. Configure the permissions by adding the following to your values—

override.yaml file:

deployment:
serviceAccount:
annotations:
iam.gke.io/gcp-service—account: <YOUR_SERVICE_ACCOUNT>

IAM Policy Update

An IAM policy update is required to add the role to the service account to assign the

38

Installing Optimizer Hub on Google Cloud

required permissions for the bucket :

>> gsutil iam get gs://<YOUR_BUCKET>
{

"bindings": [

"members": [
"serviceAccount : <YOUR_SERVICE_ACCOUNT>"
1,

"role": "roles/storage.objectAdmin"
}

1y
"et ag" H L CAM= L

You can use the following CLI command to assign the required roles to a bucket:

>>gsutil iam ch
serviceAccount : <YOUR_SERVICE_ACCOUNT>:roles/storage.objectAdmin
gs://<YOUR_BUCKET>

IAM Policy Binding

>>gcloud iam service—accounts get-iam-policy <YOUR_SERVICE_ACCOUNT>
bindings:
— members:

serviceAccount :<YOUR_PROJECT_ID>.svc.id.goog [<YOUR_NAMESPACE>/opthub-
cache]

serviceAccount :<YOUR_PROJECT_ID>.svc.id.goog [<YOUR_NAMESPACE>/opthub—
compile-broker]

serviceAccount : <YOUR_PROJECT_ID>.svc.id.goog [<YOUR_NAMESPACE>/opthub—
gateway]

serviceAccount :<YOUR_PROJECT_ID>.svc.id.goog [<YOUR_NAMESPACE>/opthub—
mgmt —gateway]

role: roles/iam.workloadIdentityUser

etag: BwYoO_53sDw=

version: 1

You can use the following CLI command to add workloadIdentity to the Kubernetes

service account names for the server components (opthub-cache, opthub-

39

Installing on an S3 Compatible Environment
compile-broker, opthub-gateway, and opthub-mgmt—gateway):

gcloud iam service-—accounts \
add-iam-policy-binding <YOUR_SERVICE_ACCOUNT> \
——role roles/iam.workloadIdentityUser \
——member
"serviceAccount : <YOUR_PROJECT_ID>.svc.id.goog[<YOUR_NAMESPACE>/opthub
—-gateway]"
gcloud iam service—accounts \
add-iam-policy-binding <YOUR_SERVICE_ACCOUNT> \
——role roles/iam.workloadIdentityUser \
——member
"serviceAccount : <YOUR_PROJECT_ID>.svc.id.goog>[<YOUR_NAMESPACE>/opthu
b—-cache]"
gcloud iam service-accounts \
add-iam-policy-binding <YOUR_SERVICE_ACCOUNT> \
——role roles/iam.workloadIdentityUser \
——member
"serviceAccount : <YOUR_PROJECT_ID>.svc.id.goog[<YOUR_NAMESPACE>/opthub
—compile-broker]"
gcloud iam service-—-accounts \
add-iam-policy-binding <YOUR_SERVICE_ACCOUNT> \
——role roles/iam.workloadIdentityUser \
——member
"serviceAccount : <YOUR_PROJECT_ID>.svc.id.goog[<YOUR_NAMESPACE>/opthub
-mgmt—-gateway]"

Installing on an S3 Compatible Environment
If you want to install Optimizer Hub on a platform which provides S3 compatibility

mode, instead of cloud native blob storage, you need the following additional settings.

Configuring Storage
Use the s3 compatible storage and specify a bucket name in your values-

override.yaml:

storage:
blobStorageService: s3
s3:
commonBucket: opthub-storagel

Configuring Compile Broker

Add the following extraArgumentsMap section under compileBroker inyour

40

Installing Optimizer Hub on Minikube

values—-override.yaml:

compileBroker:
extraArgumentsMap:
"quarkus.s3.endpoint-override": "https://storage.googleapis.com"
"quarkus.s3.aws.credentials.type": static

"quarkus.s3.aws.credentials.static-provider.access-key-id":

"{your access key}"
"quarkus.s3.aws.credentials.static-provider.secret-access-key":

"{your secret key}"

Configuring Gateway

Add the following extraArgumentsMap section gateway inyour values-

override.yaml:

gateway:
extraArgumentsMap:
"quarkus.s3.endpoint-override": "https://storage.googleapis.com"
"quarkus.s3.aws.credentials.type": static

"quarkus.s3.aws.credentials.static-provider.access-key—-id":

"{your access key}"
"quarkus.s3.aws.credentials.static-provider.secret—-access-key":

"{your secret key}"

Configuring Cache

Add the following ext raArgumentsMap Section cache inyour values—

override.yaml:

cache:
extraArgumentsMap:
"quarkus.s3.endpoint-override": "https://storage.googleapis.com"
"quarkus.s3.aws.credentials.type": static

"quarkus.s3.aws.credentials.static-provider.access-key-id":

"{your access key}"
"quarkus.s3.aws.credentials.static-provider.secret-access-key":

"{your secret key}"

Installing Optimizer Hub on Minikube
Minikube can be used for testing, evaluating, and non-cloud-managed blob storage use

of Optimizer Hub.

41

Installing Optimizer Hub on Minikube

Make sure your minikube meets the 18 vCore minimum for running Optimizer Hub.
Although minikube can run on multiple platforms, Optimizer Hub is only available for the

x64 platform, so not on macOS with M-processor.

Blob storage is required for Optimizer Hub (since 1.10) and can be added to your

Minikube setup with MinlO.

Installing Minikube

Install minikube for your platform following this installation guide.

Installing Optimizer Hub
Optimizer Hub uses Helm as the deployment manifest package manager. There is no

need to manually edit any Kubernetes deployment manifests.

1. Make sure your Helm versionis v3.8.0 or newer, check it with helm version.

2. Add the Azul Helm repository to your Helm environment:

helm repo add opthub-helm https://azulsystems.github.io/opthub-
helm-charts/
helm repo update

3. Create a namespace (i.e. my—-opthub) for Optimizer Hub.
minikube kubectl —— create namespace my-opthub

4. Create MinlO storage:

o Copy minio-dev.yaml and replace minio-dev with my—-opthub or the namespace

you created in the previous step.

o Copy minio-setup-job.yaml and again replace minio-dev.

o Install the S3 compatible storage with:

minikube kubectl —-- apply —f minio-dev.yaml —-f minio-setup-
job.yaml

42

https://min.io/docs/minio/linux/index.html
https://minikube.sigs.k8s.io/docs/start/
https://github.com/AzulSystems/opthub-helm-charts/blob/master/minio-dev.yaml
https://github.com/AzulSystems/opthub-helm-charts/blob/master/minio-setup-job.yaml

Installing Optimizer Hub on Minikube

5. Create a configuration file values-minikube.yaml.An example file is available on

GitHub in the Azul "opthub-helm-charts" project, to disable all resource definitions.

6. Install using Helm, passing in the values-minikube.yaml . In case you don’t want
to install the full Optimizer Hub, but only a part of the services, first check

"Configuring the Active Optimizer Hub Services".

helm install opthub opthub-helm/azul-opthub -n my-opthub —-f values-
minikube.yaml

The command should produce output similar to this:

NAME: opthub

LAST DEPLOYED: Mon Jan 30 14:35:29 2023
NAMESPACE: my-opthub

STATUS: deployed

REVISION: 1

TEST SUITE: None

7. Verify that all started pods are ready:
minikube kubectl —=- get all -n my-opthub

8. You can also verify using minikube dashboard:

43

https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-minikube.yaml

Upgrading Optimizer Hub

Kubernetes Dashboard — Mozilla Firefox - o0
() | & Installing Optimizer Hubon X |) Kubernetes Dashboard x | 4 ~
« > C QO [127.0.0.1:37425/apifv1/namespaces/kubernetes-dashboard/services/http:kubernetes-dashboard:/proxy/#/ B3 ® 0 & B O G =
kubernetes my-opthub X Q Search + A
= Workloads
Wordosris | Workload Status -
Cron Jobs
Daemon Sets

Succesded: 1
Deployments

Jobs
Pods

Replica Sets

Replication Controllers

Stateful Sets Running: 3 Succeeded: 1
Service Deployments Jobs Pods

Ingresses N
Ingress Classes

Services 1
Config and Storage

Config Maps 1

Persistent Volume Claims §

Secrets M Running: 3 Running: 1
Storage Classes Replica Sets Stateful Sets

Cluster

Uninstalling Optimizer Hub from Minikube
Optimizer Hub can be removed from minikube using helm, after which the namespace

can also be deleted.

helm uninstall opthub —n my-opthub
minikube kubectl —-— delete namespace my-opthub

Upgrading Optimizer Hub

Follow these steps to upgrade your Optimizer Hub instance:

1. Shut down the existing instance.

2. Create a complete backup of the blob storage content.

3. Validate your values-override.yaml file for any parameter changes.
4. Install the new version "following the installation guide”.

This procedure will cause a temporary service outage. For zero-downtime upgrades,

consider implementing a failover system. See high-availability.

44

Configuring Optimizer Hub

Rolling Back to a Previous Version

In case arollback is needed after upgrading, follow these steps:

1. Shutdown the upgraded instance.
2. Restore the blob storage content from your pre-upgrade backup.

3. Re-install the previous version.

The blob storage metadata format may vary between releases.
NOTE Performing a rollback with a blob storage containing files modified by a

newer version may result in incorrect behavior.

Configuring Optimizer Hub

Optimizer Hub Generic Defaults
Optimizer Hub is shipped as a Helm chart with all the defaults as specified in the
values.yaml file. Here you find a list of the most important generic values that can be

modified to match Optimizer Hub to your environment.

Specific settings can be found on the configuration pages of the service itself, for

example, readynow-orchestrator-defaults.

Management Gateway Parameters

Option Description Default

mgmtGateway.enabled Define if the Management Gateway needs true
to be enabled to expose the REST APIs for
ReadyNow Orchestrator and/or Cross-

Region Sync.

mgmtGateway.service.httpEndpoint.p The port used by the Management 8080

ort Gateway.

45

https://github.com/AzulSystems/opthub-helm-charts/blob/master/values.yaml

Optimizer Hub Generic Defaults

Cross-Region Sync Parameters

Option

synchronization.enabled

synchronization.peers

synchronization.initialDelay

synchronization.period

Description Default

Define if Cross-Region Sync needs to be true

enabled. You must also enable the

Management Gateway for this setting to

become effective.

A comma separated list of peer
Management Gateway URLs from other
Optimizer Hub instances to include in the

syncing process.

Initial delay for the periodic PT180s

synchronization task.

Defines a periodicity of a synchronization PT30s

with the specified Optimizer Hub peers.

Blob Storage Auto Cleanup Parameters

See how-scales.

Simple Sizing Parameters

See "Configuring Blob Storage Auto Cleanup".

SSL Parameters

See "Configuring Optimizer Hub with SSL Authentication".

Storage Parameters

Storage parameters depend on the platform of your deployment:

+ configure-blob-storage

46

#management-gateway-parameters

Using Externally Defined Secrets

+ configuring-aws-s3-storage
+ configuring-azure-blob-storage
« configuring-gcp-blob-storage

+ "S3-compatible (e.g. for Alibaba)"

Using Externally Defined Secrets
Secrets can be externally defined to allow you to manage Kubernetes secrets

independent of the Optimizer Hub configuration.

Defining Your Secrets
You can define the following secrets by overriding the following default settings in your
values-override.yaml file:

* blobstorage.s3.accesskey

* blobstorage.s3.secretkey

* azure.connectionString

+ azure.sasToken

Default Settings
These are the default settings with descriptions to describe how they are used.

47

Using Externally Defined Secrets

secrets:
blobStorage:
s3:
name of existing Secret object to use. New Secret is created
if name is empty
existingSecret: ""

name of *key* for “accessKey value in K8S Secret. It can be
renamed to match names in existing Secret
accessKeySecretKey: blob-storage—accesskey

default value for accesskey - used when new secret is created
accesskey: <yourAccessKey>

name of *key* for "“secretkey' value in K8S Secret. It can be
renamed to match names in existing Secret
secretAccessKeySecretKey: blob-storage-secretkey

default value for s3.secretkey - used when new secret is
created
secretkey: <yourSecretKey>

azure:
name of existing Secret object to use. New Secret is created
if name is empty
existingSecret: ""

name of *key* for "“connectionStringSecretKey® wvalue in K8S
Secret. It can be renamed to match names in existing Secret

connectionStringSecretKey: azure-storage-connection-string

connectionString: "<connection-string>" . For authMethod:
connection—-string,

get connection-string on Azure Portal > Storage accounts >
{storage_account_name} > Access keys

name of *key* for "“sasTokenSecretKey in K8S Secret. It can
be renamed to match names in existing Secret

sasTokenSecretKey: azure-storage—-sas-—-token

sasToken: "<sas-token>" # For authMethod: sas-token,

Get sas-token on Azure Portal > Storage accounts >
{storage_account_name} > {blob_container} > Shared access tokens

How To Use

+ If you keep the default values, the Optimizer Hub helm chart will define its own

Kubernetes secret objects and use these.

48

Configuring the Active Optimizer Hub Services

+ Or you use your existing secrets by:
o Defining the name of your Kubernetes secret object with existingSecret.

o Optionally you can define the name of the keys in your Kubernetes secret object
with, e.g. accessKeySecretKey, in case you want something different than what

Optimizer Hub expects by default.

Example
For example, if you have an existing secret with S3 credentials, and the name of this

K8S secret Object is awsS3secretsForOpthub, it should contain the following values:

MyKeyID: keyl23455
MyKey: xyzabcdef

Then you can configure Optimizer Hub with the following values in your values-

override.yaml file:

secrets:
blobStorage:
s3:
existingSecret: awsS3secretsForOpthub
accessKeySecretKey: MyKeyID
secretAccessKeySecretKey: MyKey

Configuring the Active Optimizer Hub Services
Optimizer Hub can run in different modes:
* Full: both the Cloud Native Compiler and ReadyNow Orchestrator are available.
This is the default configuration.
+ ReadyNow only: only ReadyNow Orchestrator is available.

Use the installation instructions below.

49

Configuring Optimizer Hub Host

Install Only ReadyNow Orchestrator

To install with only ReadyNow Orchestrator, pass in values—-disable—

compiler.yaml, together with your values-override.yaml:

helm install opthub opthub-helm/azul-opthub \
-n my-opthub \
—-f values-override.yaml \
—f values-disable-compiler.yaml

Disabling Cloud Native Compiler on a Full Optimizer Hub Installation
If you installed a full installation of full Optimizer Hub with Cloud Native Compiler and

ReadyNow Orchestrator, you can still disable Cloud Native Compiler by:

* Reinstalling as specified above.

+ Or disable the Cloud Native Compiler globally using the
compilations.parallelism.limitPerVvm setting, with the value 0, to override

the default value of 500.

Configuring Optimizer Hub Host
As an Optimizer Hub administrator, you must provide users the DNS name or IP:PORT
of the Optimizer Hub service or the load balancer the JVMs must connect to. The JVMs

need this for the value to be specified in the —xx: Opt HubHost=<value> option.

We highly recommend using a load-balanced setup, configured with a DNS address, that

redirects requests from JVMs to one or more Optimizer Hub services.

Host for Single Optimizer Hub service
In a setup with a single Optimizer Hub service, you can either use the included gw-

proxy component, or add your own load balancer.

Using your Own Load Balancer
It's recommended to use your own preferred load balancer, consistent with how you
dispatch HTTP traffic to your other applications. In such a case, disable gw—proxy in

Optimizer Hub and use your own instance, by adding the following to your values-

50

https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-disable-compiler.yaml
https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-disable-compiler.yaml

Configuring Optimizer Hub Host
override.yaml file:

gwProxy.enabled=false

Your load balancer must be aware of gRPC calls and avoid affinity to a single gateway

and not interrupt long calls.

If you correctly defined the load-balancer in values-override.yaml as described in
"Installing Optimizer Hub", you can discover the external IP of the service using the

following command:

$ kubectl describe service gateway —n my-opthub | grep 'LoadBalancer
Ingress:'
LoadBalancer Ingress: internal-addlff3el1591e4£93a49af3523b68e3b—

1321158844 .us-west—-2.elb.amazonaws.com

JVM customers then connect using the following command:

java —XX:0ptHubHost=internal-addlff3el591e4f93a49af3523b68e3b—
1321158844 .us-west—-2.elb.amazonaws.com \

—XX:+EnableRNO \

—jar my-app.jar

Using the Included gw-proxy

NOTE We recommend using your own load balancer.

The gw-proxy pod which is deployed in the Optimizer Hub namespace is the default
load balancer. It uses Envoy as the default gRPC proxy for optimal session balancing.

You can find the endpoint of gw—proxy using the following steps:

1. Run the following command:

kubectl —-n my-opthub get services

2. Look for the gateway service and note the ports corresponding to port 50051 inside

the container. This is the port to use for connecting VMs to this Optimizer Hub

51

Configuring ReadyNow Orchestrator
cluster.

service/gateway NodePort 10.233.15.55 <none>
8080:31951/TCP,50051:30926/TCP 52d

In this example the portis 30926.

Only the internal ports 8080 and 50051 in Optimizer Hub are fixed.
NOTE The port in each setup is a random value. You need to use this lookup

to find the port of your Optimizer Hub instance.

3. Runthe kubectl get nodes command and note the IP address or name of any

node.

4. Concatenate node IP with service ports to get something like

10.22.20.131:30926. Do not prefix it with http://.

5. JVM customers set —Xx:0ptHubHost=host :port flag to the port mapped to
50051.

java —XX:0ptHubHost=10.22.20.131:30926 \
—XX:+EnableRNO \
—jar my-app.jar

Host for High Availability and Failover
When you have multiple Optimizer Hub services to guarantee high availability (HA) and
provide a failover system, you can use the following approaches.

+ Use a (DNS) load balancer of your choice, e.g. Route 53.

+ Use the readiness state of each Optimizer Hub service by using the Kubernetes

check available on /g/health.

+ Configure your (DNS) load balancer with the host info of each Optimizer Hub service.

Configuring ReadyNow Orchestrator

When you use ReadyNow Orchestrator, JVMs all write profile log candidates to unique

52

Configuring ReadyNow Orchestrator

profile names on the service. ReadyNow Orchestrator gathers all of the candidates for a
profile name and decides which is th best candidate to serve to JVM clients requesting

that profile name.
When considering what settings are set on the client versus on the service:

* Individual JVMs decide when ReadyNow Orchestrator should consider their profile
log is a suitable candidate for sharing with other JVMs. They can also override
server-side defaults for profile log nomination candidates and maximum profile log

size.

+ ReadyNow Orchestrator also controls the rules for where to store ReadyNow profile
logs, when to clean up old logs, and service-wide defaults for profile log candidate

nomination and maximum profile log size.

Duration Configuration

When you need to specify the duration in time a process takes, use the PnDTnHnMn .nS

format, where n is the relevant days, hours, minutes or seconds part of the duration.

Configuring Cross-Region Synchronization of Profiles

When you deploy a separate instance of Optimizer Hub in each region, you can
configure Optimizer Hub to synchronize profile names between Optimizer Hub
instances so that each instance contains at least one promoted profile for each profile
name. For example, when deploying a new version of your program, you may first do a
canary run in one of your regions. This canary run populates the first generation of the
profile for the new version’s profile name. Upon success, you want to launch a full fleet
update in your other regions without doing a canary run in each region. By enabling
cross-region synchronization, the profile that you wrote in the first region is available

when you launch your fleet restarts in other regions.
To enable cross-region synchronization of profiles:

1. If necessary, assign a different port to the Management Gateway component than

the default 8080 using mgmtGateway.service.httpEndpoint .port

53

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/Duration.html#parse(java.lang.CharSequence)

Configuring ReadyNow Orchestrator

2. Define the Optimizer Hub instances that you want to synchronize by entering a

comma-separated list of URLs in synchronization.peers.

3. If necessary, adjust the number of profile generations that Optimizer Hub
synchronizes. By default, Optimizer Hub synchronizes the first two generations of the

profile.

See cross-region-sync-parameters for more information about the configuration

options.

ReadyNow Orchestrator Defaults

Optimizer Hub admins can set the following global defaults for ReadyNow profiles in

values—-override.yaml:

Option Description Default

readyNowOrchestrator.debuginfoHist [imit of rolling profile history entries 100

oryLength

readyNowOrchestrator.cache.enabled Enabling of caching the content on the true
gateway

readyNowOrchestrator.cache.maxSiz The fixed size of content cached on the 500000000

eBytes gateway

readyNowOrchestrator.completedAft Time required after the last profile update, PT24H
er after which the profile is considered
completed and updates are no longer

possible, duration specified in format

PnDTnHnMn.nS.

54

#duration-configuration
#duration-configuration

Option

readyNowOrchestrator.producers.con

tinueRecordingOnPromotion

readyNowOrchestrator.producers.ma

xConcurrentRecordings

readyNowOrchestrator.producers.ma

xPromotableGeneration

readyNowOrchestrator.producers.ma

xProfileSize

readyNowOrchestrator.cleaner.enable
d

readyNowOrchestrator.cleaner.extern

alPersistentStorageSoftLimit

Configuring ReadyNow Orchestrator

Description Default

Flag to define if profiles must still be false
recorded after the maxGeneration has
been reached. This can be used for

debugging purposes.

The number of concurrent copies of a 10
specific generation ReadyNow

Orchestrator accepts before it tells other
JVMs trying to write the same generation

of the same profile name to stop

Maximum number of generations 3
ReadyNow Orchestrator accepts for a
profile name. Note that here is no

'unlimited' value available

Limit on the input profile size, in bytes. No 0

limit by default

Enabling of automatic repository clean-up true
Determines the threshold for the blob data 10Gi

usage, at which ReadyNow Orchestrator

initiates its cleanup process.

55

Option

readyNowOrchestrator.cleaner.keepU

nrequestedProfileNamesFor

readyNowOrchestrator.promotion.mi

nProfileSize

readyNowOrchestrator.promotion.mi

nProfileSizePerGeneration

Configuring ReadyNow Orchestrator

Description Default

Time limit after which the profile name 0
gets removed if it was not requested

within the given duration specified in

format PnDTnHNMn.nS.

By default, no limit is defined. You need to
specify a value if you want to enable

complete cleanup of unused profiles.

Minimal size (bytes) threshold for all 1000000
generations unless per-generation flags

are specified. Per-generation flags take

precedence over the global setting, but the

global might be used as a generation 0

setting in case it is not specified in the

corresponding per-generation setting.

Minimal size thresholds for each 0:1000000\
generation. In case a generation is /1:1000000
L L . 0\,2:25000

missing in the list, it inherits a value from
000\,3:500

the previously specified generation or the 4900
global setting, if there is no previous

generation specified.

List of pair <generation>:<size>, separated
by \, .

For more information, check
"Understanding ReadyNow Orchestrator

Generations".

56

#duration-configuration
#duration-configuration
#duration-configuration

Option

readyNowOrchestrator.promotion.mi

nProfileDuration

readyNowOrchestrator.promotion.mi

nProfileDurationPerGeneration

readyNowOrchestrator.producers.ma

xSynchronizedGeneration

Configuring Blob Storage Auto Cleanup

Description

See previous.

Duration specified in format

PnDTnHNnMn.nS.

See minProfileSizePerGeneration.

List of pair <generation>:<duration>,
separated by \, . The duration must be

specified in the format PnDTnHnMn.nS.

For more information, check
"Understanding ReadyNow Orchestrator

Generations".

Defines the maximum number of profile
generations to be synced from peers.
Profiles with a higher generation are not

synced from peers.

Configuring Blob Storage Auto Cleanup

Default

PT2M

0:PT2M\,1:
PT15M\,2:
PT30M\,3:
PT60M

Optimizer Hub uses your cloud provider’s blob storage as the main persistence

mechanism. Artifacts persisted to blob storage are:

+ ReadyNow Orchestrator: saved profile logs.

+ Code Cache: previously performed compilations.

Optimizer Hub includes auto cleaner mechanisms to clean up unused data. Cleanup for

ReadyNow profile logs and Code Cache entries are configured separately.

57

#duration-configuration
#duration-configuration
#duration-configuration
#duration-configuration

Configuring Blob Storage Auto Cleanup

Code Cache Cleanup
You specify the target size for the blob storage that Optimizer Hub should not exceed,

as well as how often Optimizer Hub should check if cleaning is necessary.

The following are the default values, which you can modify in your values-—

override.yaml file:

codeCache:
cleaner:
enabled: true
targetSize: "107374182400" # 100GiB, use quotes for large numbers

interval: PT2H # 2 hours

How Code Cache Storage Gets Cleaned

At a regular interval, the Code Cache cleaner checks whether the current usage is bigger
than targetsSize. If so, the cleanup process is triggered. This process deletes the

Code Cache items that are least recently used to get below the targetsSize.

Check Used Code Cache Storage Size
You can check the used storage size in the Grafana dashboard in the "Details: cache”

section.

Hazelcast CoCa Storage Usage

0B

05:57:00 05:58:00 05:59:00 06:00:00 06:01:00 06:02:00 06:03:00 06:04:00 06:05:00

== |sed - blobstore (cache-0) Threshold

ReadyNow Profile Log Cleanup

ReadyNow Orchestrator performs automatic cleanup of unused profile logs in order to

58

Configuring Blob Storage Auto Cleanup

fit collected data in the configured storage. When the data size in your storage exceeds
a threshold, ReadyNow Orchestrator deletes old profile logs, thus guaranteeing that a

promoted profile log is available for all profile names.

The following are the default values, which you can modify in your values-—

override.yaml file:

readyNowOrchestrator:

cleaner:
enabled: true
externalPersistentStorageSoftLimit: "10Gi"

targetSize: 0 # use only to override auto-settings
warningSize: 0 # use only to override auto-settings
keepUnrequestedProfileNamesFor: O
keepDebugOnlyGenerationProfilesFor: "P7D"

You can configure ReadyNow Orchestrator to delete unused profile names completely
after a given duration using the keepUnrequestedProfileNamesFor property in
your values—-override.yaml . By default, this value is 0, meaning unused profiles are
not cleaned up completely. For example, to keep unused profiles for 5 days, use the

following:

readyNowOrchestrator.cleaner.keepUnrequestedProfileNamesFor=P5D

Depending on your usage, ReadyNow Orchestrator’s clean-up
mechanism may not be able to keep the actual size of your stored
profiles below the size of your storage when not enough profiles can be

NOTE cleaned up. When you reach 90% usage, a warning is printed in the log of
the gateway service. In that case, you need to increase the

externalPersistentStorageSoftLimit.

If your storage fills up completely, JVMs attempting to write to ReadyNow Orchestrator

receive an error.

How ReadyNow Storage Gets Cleaned

By default, the ReadyNow profile log auto cleaner follows these steps:

59

Configuring Optimizer Hub SSL Authentication

* For each profileName: deletes all the profiles that are not promoted at this time. The

cleaner keeps the five last-used profileLogs. It only deletes enough profileLogs to get

under targetSize.
o The currently promoted profiles will never be deleted.

+ Deletes all debug only profileLogs, meaning profileLogs with a generation higher than
readyNowOrchestrator.producers.maxPromotableGeneration,Wthey
have not been accessed longer than the period defined in

keepDebugOnlyGenerationProfilesFor.

o Can delete all of these debug profileLogs, but only deletes enough to get under

targetSize.
+ Deletes any completely unrequested profileNames.

o Will delete all of them, regardless of targetSize.

Configuring Optimizer Hub SSL Authentication
The recommended setup is to have a load balancer or service mesh in front of the
Optimizer Hub service, see load-balancing. This will then be used as the connection

point for the JVMs to interact with Optimizer Hub and include the SSL configuration.

In cases where such a load balancer or service mesh is not available, for instance for
development and evaluation, Optimizer Hub itself can be configured to run with or
without SSL authentication. Of course, it is highly recommended that you run your

production Optimizer Hub with SSL authentication.

SSL Configuration in Optimizer Hub

Follow these steps to configure the SSL configuration within the Optimizer Hub service.

1. Create or use an existing SSL certificate. To enable SSL encryption of the
communication between the JVM and Optimizer Hub, you need to provide a

certificate and a corresponding private key in the pem format.

60

Configuring Optimizer Hub SSL Authentication

The common name field in the certificate must match the name of the
NOTE Optimizer Hub service as provided to client JVMs via the
—XX:OptHubHost flag. Otherwise there may be issues when

connecting.

2. Enable SSL in your values-overrride.yaml file:

ssl:
enabled: true

3. Add your certificate and private key. This can be done in several ways:

a. The most secure way to add certificates is using a separate chain that manages
your certificate. You can then point the deployment to a custom secret in the
installation namespace. Such a secret needs to have keys named cert .pem and

key.pem.

ssl:
secretName: "my—-custom—secret"

b. You can add the certificate and private keys directly to the values.yaml as values.
This is the simplest way to run quick experiments in a controlled environment,
especially when you're installing from the Helm repository. We do not recommend

this approach in production as it embeds private security credentials in a config

file:
ssl
value:
cert =
————— BEGIN CERTIFICATE————-—
————— END CERTIFICATE—-———-—
key -

61

Configuring Optimizer Hub SSL Authenticat

ion

c. If you downloaded and unpacked the Helm chart to a local directory, you can just

place files named cert .pem and key.pem into the root directory of your Helm

chart.

4. Perform Helm installation as shown in the "general installation guide".

SSL Configuration for Clients
Azul Zing Builds of OpenJDK (Zing) can connect both with (default) or without SSL to
Optimizer Hub.

Running Zing Clients with SSL
By default, Zing connects to Optimizer Hub using SSL.

Make sure the service certificate is trusted by the client machine where you run Zing.
This can be achieved by having the certificate signed by a publicly trusted certificate
authority. If you have an internal CA trusted within the company infrastructure, make

sure it is trusted.

To make sure an authority is trusted usually involves copying its certificate file to
/usr/local/share/ca-certificates/ or /etc/ssl/certs/.The exact path
and process depends on your OS distribution. Follow the instructions for your OS
distribution to register the certificate on your client machine. For example, on Ubuntu-

based distributions you run the following command:

sudo openssl x509 —-in {path to cert.pem} —-inform PEM -out
/usr/local/share/ca-certificates/cert.crt
sudo update-ca-certificates

Alternatively, you can explicitly instruct Zing to use and trust a specified certificate on

the filesystem by using the —-XX:OptHubSSLRootsPath={path to cert.pem} fl

ag.

If certificate validation fails, your .pem file is missing or does not match the certificate

that you uploaded to Optimizer Hub, you get the following error:

62

Configuring Prometheus and Grafana

[1.856s] [info] [concomp] [gRPCEvent] read error!
[1.856s] [info] [concomp] [gRPC processing] BidiStreamWrapper is dying,
finishing stream 0x7fbec00180f0 with status: failed to connect to all
addresses (14)

Running Zing Clients without SSL
NOTE Using Optimizer Hub without SSL must only be used for testing.

If you installed Optimizer Hub without enabling SSL, you must use the -xx:
-OptHubUseSSL flag to instruct Zing to allow unsecured connections to Optimizer

Hub.

Before version 1.8.0 the flag was called -xx:+/-CNCInsecure.

NOTE
Because of this change, you need to review your settings.

If you attempt to connect to a Optimizer Hub that is running without SSL and do not

specify the —xx:-OptHubUseSSL flag, you get the following error:

E1011 13:16:23.198074100 29 ssl_transport_security.cc:1446]
Handshake failed with fatal error SSIL_ERROR_SSL:
error:1408F10B:SSL routines:ssl3_get_record:wrong version number.

Configuring Prometheus and Grafana
The Optimizer Hub components are already configured to expose key metrics for
scraping by Prometheus. But to be able to monitor this info in a Grafana dashboard,

some additional configuration is required.

In your production systems, you likely want to use your existing Prometheus and

Grafana instances to monitor Optimizer Hub. If you are just evaluating Optimizer Hub,

you may want to install a separate instance of Prometheus and Grafana to just monitor

your test instance of Optimizer Hub.

63

Configuring Prometheus and Grafana

Monitoring Optimizer Hub assumes you have a Prometheus and Grafana

NOTE
available, or install one within your Kubernetes cluster.

Prometheus Configuration Instructions
Optimizer Hub components expose their metrics on HTTP endpoints in a format
compatible with Prometheus. Annotations are in place in the Helm chart with the details

of the endpoint for every component. For example:

annotations:
prometheus.io/scrape: "true"
prometheus.io/port: "8080"
prometheus.io/path: "/g/metrics"

The following snippet is an example for the Prometheus configuration to scrape the

metrics based on the above annotations:

64

Configuring Prometheus and Grafana

Example scrape config for pods

#

The relabeling allows the actual pod scrape endpoint to be
configured via the

following annotations:

#

* “prometheus.io/scrape’ : Only scrape pods that have a value of
“true”

* “prometheus.io/path’: If the metrics path is not °/metrics’

override this.
* “prometheus.io/port’: Scrape the pod on the indicated port
instead of the
pod's declared ports (default is a port-free target if none are
declared) .
— Jjob_name: 'kubernetes-pods'

kubernetes_sd_configs:

- role: pod

relabel_ _configs:
— source_labels:
[_ _meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
— source_labels:
[_ _meta_kubernetes_pod_annotation_prometheus_io_path]
action: replace
target_label: _ _metrics_path___
regex: (.+)
— source_labels: [__address_ ,
_ _meta_kubernetes_pod_annotation_prometheus_io_port]
action: replace

regex: ([~:14) (2::\d+)?2; (\d+)
replacement: $1:S$2
target_label: _ _address___

mapping of labels, this handles the "app label
- action: labelmap
regex: __meta_kubernetes_pod_label_ (.+)
— source_labels: [__ _meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
— source_labels: [_ _meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
metric_relabel_configs:
— source_labels:

— namespace
action: replace
regex: (.+)

target_label: kubernetes_namespace

65

Sizing and Scaling your Optimizer Hub Installation

Grafana Configuration Instructions

Once Prometheus is available and collection data from the Optimizer Hub Components,

a dashboard can be added. In opthub-install-1.11.0.zip >

grafana/opthub_dashboard. json, you can find a Grafana configuration file.

This dashboard expects the following labels to be attached to all application metrics,

refering to the Prometheus configuration above:

+ cluster_id: The identifier of the Kubernetes cluster on which Optimizer Hub is

installed. This allows you to switch between Optimizer Hub instances in different

clusters.

* kubernetes_namespace: The Kubernetes namespace on which Optimizer Hub is
installed. This setting allows you to switch between Optimizer Hub instances in

different namespaces of the same cluster.
* kubernetes_pod_name: The Kubernetes pod name.

+ app: The value of the app label on the pod, which is provided by the 1abelmap

action from the example Prometheus configuration mentioned below.

You need to manually edit the dashboard file if these labels are named differently in

your environment.

The dashboard also relies on some infrastructure metrics from Kubernetes and
cAdvisor, such as kube_pod_container_resource_requests and

container_cpu_usage_seconds_total.

Sizing and Scaling your Optimizer Hub Installation

In order for Optimizer Hub to perform the JIT compilation in time, you need to make
sure the installation is sized correctly. You scale Optimizer Hub by specifying the
minimum and maximum number of vCores you wish to allocate to the service. The

Helm chart automatically sets the sizing of the individual Optimizer Hub components.

66

https://cdn.azul.com/optimizer_hub/1.11.0/opthub-install-1.11.0.zip
https://github.com/kubernetes/kube-state-metrics
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md

Sizing and Scaling your Optimizer Hub Installation

Service Scaling
Optimizer Hub can be configured to run one ore multiple services, see "Configuring the
Active Optimizer Hub Services". According to the selected services, different scaling

approaches are required.

Cloud Native Compiler (CNC)

The CNC service must be able to autoscale rapidly to handle resource demands
effectively. From time-to-time, depending on the number of starting applications, it
needs a large amount of resources to be able to perform all requested compilations in
time. As such, it must scale up according to the needs, but also scale down quickly
when resources are no longer needed as it's prohibitively expensive to keep those

resources always on.

ReadyNow Orchestrator (RNO)
When Optimizer Hub is configured on RNO-only mode (using values—disable—
compiler.yaml, see "Configuring the Active Optimizer Hub Services"), it doesn’t need

to scale. The predefined sizing will be able to handle full RNO functionality.

Combined Services
When both CNC and RNO are enabled, but you only use RNO, the Optimizer Hub service

may in some rare cases of extreme traffic scale up more instances.

How Optimizer Hub Scales
A critical metric to measure whether your Cloud Native Compiler is responding to

compilation requests in time is the Time to Clear Optimization Backlog (TCOB).

67

Sizing and Scaling your Optimizer Hub Installation

Time to Clear Optimization Backlog

1.67 min

' (il

I_I-l. 0o 05:00 06:00 10:00 11:00 1200 7300

== faximum ac

When you start a Java program, there is a burst of compilation activity as a large
amount of optimization requests are put on the compilation queue. Eventually, the
compiler catches up with the optimization backlog and all new compilation requests are
started within 2 seconds of being put on the compilation queue. The TCOB is the
measurement, for each individual JVM, of how long it took from the start of the
compilation activity to when the optimization backlog is cleared and all requests are

started within 2 seconds.

Client JVMs

75
50
25

0

11:00 11:30 12:00 12:30

== Total connected == Backlogged == |ocal fallback

68

Sizing and Scaling your Optimizer Hub Installation

By default, Optimizer Hub is configured to use autoscaling. You can control autoscaling
by specifying the minimum number of vCores for the entire Optimizer Hub installation.
The minimum vCores for an Optimizer Hub installation, including a management-
gateway pod and one compile-broker pod, is 39 vCores. If you want more compilation

capacity, increase minvVCores.

The maximum number of vCores, configured by maxvCores, defines the maximum
number of vCores over which the Optimizer Hub service will not scale regardless of how

much load it is under.

These values can be defined by overriding the default values in your values-—

override.yaml file.

simpleSizing:
vCores: 39
minVCores: 39
maxVCores: 113

The minimum and maximum number of vCores is used by the Optimizer Hub service to
adjust the sizing of the instance to try to meet your
timeToClearOptimizationBacklog limit for all the JVMs that request

compilations.

NOTE Optimizer Hub uses a custom Kubernetes operator to scale and does not
use Kubernetes Horizontal Pod Autoscalers.

Scaling API

The api-methods allows you to instrument Optimizer Hub to temporary increase the
minimum number of vCPUs between a start and end timestamp. Multiple calls can be
made to this API and Optimizer Hub will take all given timestamps and potential

overlaps into account to start and stop the extra resources.

69

JVM Connections to Optimizer Hub

JVM Connections to Optimizer Hub
Connecting a JVM to Optimizer Hub

You can use an Optimizer Hub instance to provide compilations with Cloud Native

Compiler, reading and writing profile logs with ReadyNow Orchestrator, or both.

Ask your Optimizer Hub instance admin for the "host of the Optimizer Hub service" and
enteritin the -XX:OptHubHost=<dns> Or —XX:0OptHubHost=<host>:<port> JVM
parameter flag to create a connection between the JVM and the Optimizer Hub

instance.
For additional flags, see:

+ "Using Cloud Native Compiler"

+ "Using ReadyNow Orchestrator"

Establishing a connection to Optimizer Hub does not force the JVM to
NOTE fetch compilations from Optimizer Hub and not perform compilations

locally by default.

Using Cloud Native Compiler

You configure an Azul Zing Build of OpenJDK (Zing) to request compilations from Cloud
Native Compiler by specifying the IP address of the service along with other command-
line options. If the Cloud Native Compiler cannot respond to the compilation requests in

time, the Azul Zing JVM switches to local JIT compilation until the service recovers.

Cloud Native Compiler JVM Options

The minimum JVM options to request compilations from Cloud Native
NOTE Compiler are -xX:0OptHubHost={value} and

—XX:+CNCEnableRemoteCompiler.

70

Using Cloud Native Compiler

Command Line Option Description Default

-XX:0OptHubHost=<value> DNS name or 1P :PORT of the Optimizer null
Hub service where Optimizer Hub is
listening. See "Connecting a JVM to
Optimizer Hub" for instructions to

determine the correct host and port.

-XX:[+/-]CNCEnableRemoteCompiler Allows usage of the remote false

compiler when Cloud Native
Compiler has established a
connection. Requires

OptHubHost.

-XX:CNCEngineUploadAddress=<host:po Address to upload the compiler

> engine. Only needed when your

Optimizer Hub has non-standard

ports.
Obsolete for 1.10
NOTE
and above.
-XX:CNCLocalFallbackOptLevelLimit=<3, [imit the OptLevel for local 3

210> compilations when Cloud Native

Compiler is enabled.

See the Zing documentation >

Falcon Compiler Options >

-XX:FalconOptimizationLevel.

71

https://docs.azul.com/prime/Command-Line-Options#_falcon_compiler_options
https://docs.azul.com/prime/Command-Line-Options#_falcon_compiler_options
https://docs.azul.com/prime/Command-Line-Options#_falcon_compiler_options

Command Line Option

-XX:[+/-]OptHubUseSSL

-XX:OptHubSSLRootsPath=<path to

cert.pem>

-Xlog:[+/-lconcomp

Using Cloud Native Compiler

Description Default

Instructs the Zing JVM to EELIE
communicate directly with

Optimizer Hub without using SSL.

Use this option if you installed

Optimizer Hub without SSL.

Instructs the Zing JVM to use
and trust a specified SSL

certificate on the filesystem.

Display messages describing false

communication with Optimizer
Hub.

Fallback to Local JIT Compilation

When you connect a Zing JVM to a Cloud Native Compiler, the JVM attempts to fetch all

JIT compilations from the service. If the Cloud Native Compiler cannot meet the JVM's

requests in time, the JVM automatically falls back to performing optimizations on the

client. Factors that can cause a Cloud Native Compiler to not meet optimization

demand include:

+ The service does not have the corresponding "Compiler Engine" installed.

« The service is down or cannot be reached.

+ The service does not have enough capacity to meet the optimization requests. If you

have autoscaling enabled, this is often a temporary problem as new resources come

online. See "Sizing and Scaling your Optimizer Hub Installation" for more info.

When a Zing JVM switches to local JIT compilation, it keeps checking whether Cloud

Native Compiler is ready to perform optimizations. Once Cloud Native Compilation is

back online and healthy, the Azul Platform Prime JVM switches back to requesting

72

Using ReadyNow Orchestrator

optimizations from the service.

The following output in the JVM concomp log show when fallback to local JIT

compilation is enabled and disabled:

[110,991s] [info] [concomp] [LocalFallback] local compilation queue
disabled
[111,018s] [info] [concomp] [LocalFallback] local compilation queue
enabled

Logging and SSL
To view compiler info and ensure that the JVM is correctly connecting to Optimizer Hub,

use the —Xlog:concomp flag.

By default the Zing JDK connects to Optimizer Hub using SSL. If you did not enable SSL
during Optimizer Hub deployment, you must use the -Xx: -OptHubUseSSL flag to

instruct Zing to connect without SSL.

If you attempt to connect to Optimizer Hub, running without SSL, and do not specify the
—-XX:-OptHubUseSSL flag, you get the following error (visible with the

-Xlog:concomp flag):

E1011 13:16:23.198074100 29 ssl_transport_security.cc:1446]
Handshake failed with fatal error SSL_ERROR_SSL: error:1408F10B:SSL
routines:ssl3_get_record:wrong version number.

Using ReadyNow Orchestrator
Using ReadyNow involves two distinct phases:

+ Recording a good profile log that accurately captures the usage pattern you want to

warm up. Recordings can be refined automatically through repetitive training cycles.

+ Using the profile log as the input to newly started VMs.

Advantages of ReadyNow Orchestrator

Using the Optimizer Hub ReadyNow Orchestrator to record and serve profile logs,

73

https://docs.azul.com/prime/Use-ReadyNow

Using ReadyNow Orchestrator

greatly simplifies the operational use of ReadyNow.

+ There is no need to configure any local storage for writing the profile log.

+ JVMs provide profile logs, outputting them to Optimizer Hub ReadyNow Orchestrator

on an ongoing basis as the JVM experience evolves.

o JVMs designate a set of criteria for nominating their individual profile logs as
candidates for promotion with criteria chosen by the JVM that are configurable,

with some defaults.

+ ReadyNow Orchestrator handles recording multiple profile candidates from multiple

JVMs and promoting the best recorded profile log.

o The ReadyNow Orchestrator considers all provided logs that meet their specific
JVM'’s nomination criteria and meet the ReadyNow Orchestrator’'s own promotion

criteria that are configurable, with some defaults.

o You no longer need to manually prepare a profile and then distribute it before
rolling out new versions of your code. Instead, you can generate the profile

automatically in production as part of your fleet restart.

o Within the qualifying candidates (eligible for nomination and promotion, per
criteria), Optimizer Hub ReadyNow Orchestrator picks a specific log as the
“currently prompted” profile log, based on rules for picking the promoted log from
within the qualifying candidates are. For example, the longest qualifying profile log

in the largest generation.

* When a JVM connects to the Optimizer Hub ReadyNow Orchestrator service with a
profile name, it is provided with the currently promoted profile log (if one exists with

that profile name) as an input.

+ ReadyNow Orchestrator monitors the optimization profiles of an entire fleet of JVMs

rather than just one JVM, intelligently picking the best one.

Creating and Writing To a New Profile Name
You use ReadyNow Orchestrator by "creating a connection to the Optimizer Hub" and

specifying the criteria for reading and writing profile logs. All of the necessary options

74

Using ReadyNow Orchestrator

can be specified as command-line arguments to the Java process at the time of

deployment.
The basic lifecycle of using ReadyNow profile logs is as follows:

+ The JVM streams profile log output to ReadyNow Orchestrator, giving the output a

unique profile name.

+ Based on basic criteria specified in the command-line arguments, the JVM

nominates the output profile log as a candidate for sharing with other JVMs.

+ ReadyNow Orchestrator deals with candidate profile logs arriving from various JVMs

that use the same profile name.

« Whenever the service receives a request for a profile log with a given profile name, it
examines the candidates it has collected and serves up the best one. This can
change over time as ReadyNow Orchestrator receives new and more complete profile

log candidates.

+ JVMs can request multiple generations of a profile log. Rather than starting with no
input profile log and recording its output log based on the regular JIT profiling
process, the JVM can take a profile log as the input and further refine the profiling
information, recording its experience as a new generation of that profile log. If you
need to minimize the chances of having any deoptimizations through the life of your
Java program, it is sometimes beneficial to record several generations. ReadyNow
Orchestrator always serves the newest generation for a profile name to JVMs. JVMs
can cap the number of generations that they write out to avoid developing the profile

forever.

ReadyNow Orchestrator JVM Options
The following options are available in Azul Prime when using ReadyNow Orchestrator

with Optimizer Hub:

75

Using ReadyNow Orchestrator

Command Line Option Description Default

-XX:0OptHubHost=<value> DNS name or 1P :PORT of the Optimizer null
Hub service where Optimizer Hub is
listening. See "Connecting a JVM to
Optimizer Hub" for instructions to

determine the correct host and port.

-XX:ProfileName=<value> Name of the profile that the JyM null
both reads from and writes to.
Use of this flag is equivalent to

using
—XX:ProfileLogIn=<value>

—XX:ProfileLogOut=<value
>, and is the preferred way to
specify profile names when
different input and output names

are not needed.

-XX:[+/-]EnableRNO Enables ReadyNow read and write to false
ReadyNow Orchestrator. Requires
OptHubHost and uses ProfileName

as the name for the profile log.

76

Command Line Option

-XX:ProfileLogOut=<value>

Using ReadyNow Orchestrator

Description Default

The ProfileLogOut enables Zing ~ null
to record compilations from the
current run. <value> isthe

name of the profile that the JVM

reads as input to ReadyNow.

For local
ReadyNow you
often have to
specify different
names for

NOTE ProfileLogIn
and
ProfilelLogOut.
But for ReadyNow
Orchestrator you
must only use

ProfileName.

77

Command Line Option

-XX:ProfileLogln=<value>

Using ReadyNow Orchestrator

Description Default

The ProfileLogln allows Zingto ~ null
base its decisions on the

information from a previous run.

The current ProfileLogln file
information is read in its entirety -
before Zing starts to create a

new ProfileLogOut log. <value>

is the name of the profile that the

JVM reads as input to ReadyNow.

For local
ReadyNow you
often have to
specify different
names for

NOTE ProfileLogIn
and
ProfileLogOut.
But for ReadyNow
Orchestrator you
must only use

ProfileName.

78

Command Line Option

-XX:ProfileLogOutNominationMinSize

-XX:ProfileLogOutNominationMinSizePe

rGeneration

Using ReadyNow Orchestrator

Description

Indicate to server that the

produced profile is eligible for

promotion after specified amount

of bytes recorded.
0 = any size eligible

-1 = never gets promoted

Define minimum acceptable
amount of bytes per generation
which the profile size should
reach to become eligible for

promotion.

List of pair <generation>:<size>,

separated by , . For example:

0:1000000,1:10000000,2:2
5000000, 3:50000000

For more information, check
"Understanding ReadyNow

Orchestrator Generations".

Default

™

null

79

Command Line Option

-XX:ProfileLogOutNominationMinTimeS

ec

-XX:ProfileLogOutNominationMinTimeS

ecPerGeneration

Using ReadyNow Orchestrator

Description Default

When used with ReadyNow 120
Orchestrator, the minimum time,

in seconds, a profile must record
before ReadyNow Orchestrator

can nominate it as a candidate.
0 =any duration eligible

-1 = never gets promoted

When used with ReadyNow null
Orchestrator, the minimum time,

in seconds, per generation during
which the profile should be

recorded in order to become

eligible for promotion.

List of pair
<generation>:<duration>,

separated by , . For example:

0:100,2:150

For more information, check
"Understanding ReadyNow

Orchestrator Generations".

80

Command Line Option

-XX:ProfileLogOutMaxNominatedGenera

tionCount

Using ReadyNow Orchestrator

Description Default

When used with ReadyNow 0
Orchestrator, specifies the
maximum generation of a profile

that a VM nominates.

This parameter has a server-side

counterpart
readyNowOrchestrator.pro

ducers.maxPromotableGene
ration. The profile has to
satisfy both settings to be

promoted.
0 = unlimited

For more information, check
"Understanding ReadyNow

Orchestrator Generations".

81

Command Line Option

-XX:ProfileLogMaxSize=<value in bytes>

Using ReadyNow Orchestrator

Description

Specifies the maximum size that
a ReadyNow profile log is
allowed to reach. Profiles get
truncated at this size, regardless
of whether the application has

actually been completely warmed

up.

This parameter has a server-side

counterpart

readyNowOrchestrator.pro
ducers.maxProfileSize. The
profile will be allowed to reach
whatever is the smallest of both

settings.

It is recommended to either not
set this size explicitly, or set it
generously if required, for

example:

—XX:ProfileLogMaxSize=1G

0 = unlimited

Default

0

82

Using ReadyNow Orchestrator

Command Line Option Description Default

-XX:ProfileLogTimeLimitSeconds=<valu |nstructs ReadyNow to stop 0
e in seconds> adding to the profile log after a
period of N seconds regardless
of where the application has
been completely warmed up. It is
recommended to either not set
this size explicitly, or set it

generously if required.

0 = unlimited

-XX:ProfileLogDumplnputToFile=<name> Dumps input profile to the null
specified path. For debugging

purposes only.

-XX:ProfileLogDumpOutputToFile=<nam Dumps output profile to the null
e>

specified path. For debugging

purposes only.

-XX:RNOConnectionTimeoutMillis Timeout on establishing remote 5000
connection and timeout on
interval between downloading
two chunks. Specified in

milliseconds.

83

Using ReadyNow Orchestrator

Command Line Option Description Default

-XX:RNOProfileFallbacklnput Experimental feature. Local null
filesystem path which gets used
in case no profile data is
downloaded. E.g., in case of a
missing connection or the
requested profile name doesn't

exist on the server.

-XX:ProfileLogOutVerbose Enables |ogg|ng of verbose, true

optional tracing information in
-XX:ProfileLogOut

Substitution Macros

The profile name is the central organizing attribute that ReadyNow Orchestrator uses to
group together profile logs. ReadyNow Orchestrator regards all candidates it receives
that contain the same profile name as being for the same application, with no further
knowledge of what code was actually runs. This poses the danger of accidentally using
the same profile name for two different applications. For example, if a user copies and
pastes the command-line arguments, including the profile name, from a production
application and uses it to run HelloWorld, the HelloWorld profile could, in some cases,

replace your valid production application profile.

To avoid this danger, you can use substitution macros in your profile name to limit the
likelihood of profile name clashes between different applications. Each macro unfolds

to a 4-byte hash string taken from a particular plain-text string corresponding to a

property:

Macro Description

%classpathhash Hashed user-defined Java class path string

84

Registering a New Compiler Engine in Cloud Native Compiler

Macro Description

%vmargshash Hashed JVM arguments string

%vmflagshash Hashed JVM flags string

%cmdlinehash Hashed string containing all plain-text values from above macros. Input

values are concatenated to one string: Java class path string + JVM
arguments string + JVM flags string. Afterwards, 4-bytes hash is applied to

concatenated result.

%jdkver Hashed JDK version number converted to string

%jvmver Hashed JVM version number converted to string

%prop=<PROPERTY Substition macro defining the profile log name. This gets
>% replaced with the value of the corresponding Java system
property. Provide these properties to the JVM on startup with

—Dprop=value.

For example:

-Dmyprofilename=test-profileout \
—XX:ProfileLogOut=%prop=myprofilename%

Registering a New Compiler Engine in Cloud Native Compiler
Since different versions of Azul Zing Builds of OpenJDK (Zing) JVMs may require
different compiled code, Optimizer Hub’s Cloud Native Compiler must be able to
produce different versions of compiled code simultaneously. You do not need to create

a separate Optimizer Hub instance for each application or different Java version.

Cloud Native Compiler does not have its own compiler - it is just server-side
infrastructure for running the JIT compiler that ships inside of Zing. This compiler is

uploaded to Cloud Native Compiler from the JVM in the form of a Compiler Engine.

85

Understanding ReadyNow Orchestrator Generations

Each version of Zing contains a signed Compiler Engine distributable. The JVM auto-
uploads any missing compiler engine on startup. Compiler Engines are signed to

prevent malicious versions of Compiler Engines from being installed.

If a Zing connects to a Cloud Native Compiler service that does not have the
corresponding Compiler Engine installed, the JVM automatically switches to performing

the optimizations on the client VM.

If a JVM requests compilations from Cloud Native Compiler that does
NOTE not have the corresponding compiler engine, the JVM switches to local
JIT compilation and starts auto-uploading the compiler engine for future

use.

Auto-Uploading Compiler Engines
For JVMs connecting to Cloud Native Compiler in the same Kubernetes cluster, or
connecting to Cloud Native Compiler that is fronted by an external load-balancer, auto-

uploading works with no additional configuration.

Understanding ReadyNow Orchestrator Generations

When using ReadyNow, you get the best results if you perform several training runs of
your application to generate an optimal profile. For example, to generate a good profile
for an application instance called MyApp-v1.5, you perform three training runs of your
application to record three generations of the ReadyNow profile log. For each training
run, you read in the generation recorded by the last training run as the input profile for

the current training run.

86

Understanding ReadyNow Orchestrator Generations

Input Output
Training Run 1 No Input JVM |4} Mﬁgﬁ;; i —
& MyApp-v1.5 MyApp-v1.5
Training Run 2 — > " (Gen0) VM| Gent) |
& MyApp-v1.5 MyApp-v1.5
Training Run 3 5’; it A wHl— EEGF;F:Q}
MyApp-v1.5

(Gen2 - Promoted)

You want to make sure that the output of each training run meets minimum criteria to

be promoted as the input for the next level. These promotion criteria can be:

* The duration (time) of the training run

+ The size of the candidate profile log

The ReadyNow Orchestrator feature in Optimizer Hub automatically takes care of
creating a promoted profile as you run your application. Users specify the promotion
criteria for each version of their application and a unique ProfileName as Java
command line parameters. Administrators can also specify server-side global
promotion criteria that must also be met. When deploying a new version of an
application, ReadyNow Orchestrator automatically collects candidates from many JVMs
running the same ProfileName and performs the training runs to generate the best

promoted profile.

Configuring Generations

ReadyNow Orchestrator allows you to set different minimum size and recording
durations for different generations of your profiles. Often you want to promote the first
generation of your profile as quickly as possible so new JVMs are not starting with
nothing, but you want your second generation to record for a longer time before

promotion, so it is more complete.

87

Understanding ReadyNow Orchestrator Generations

You can use configuration settings for both readynow-orchestrator-defaults itself and
the readynow-orchestrator-jvm-options to change this behavior if the default values

don't deliver the desired result.

Basic Profile Recording with Default Generations

In its most basic form, you let the defaults do all the work. By default, ReadyNow
Orchestrator nominates profile logs after three full generations and doesn't place a limit
on log size. Suppose you want to record a new profile while deploying code to a fleet

running in production. Run with the following options:

java —XX:OptHubHost={host:port} \
—-XX:+EnableRNO \
—-XX:ProfileName=MyApp-v3 \
—jar myapp.jar

In this case, all JVMs nominate their logs based on the defaults (2 minutes for the first
generation, 15 minutes for the second, 30 minutes for the third, 60 minutes for the
fourth) and keep recording until the JVM shuts down. For best results, do a testrunin a
canary instance for at least two minutes and if possible a full ten minutes. This creates
generation 1 of your profile. Then restart your fleet as normal. As JVMs start up, they
receive a profile from ReadyNow Orchestrator and check the generation number. If that
number is less than the server-side default maximum of 3, the JVM writes out the next
generation of the profile. Once there is a valid generation 3 of the profile on ReadyNow

Orchestrator, none of the JVMs write any more output.

You can overrule the server-side defaults, by providing extra options, for example:

java —XX:OptHubHost={host:port} \
—XX:+EnableRNO \
—-XX:ProfileName=MyApp-v3 \
—=XX:ProfileLogOutNominationMinSizePerGeneration=0:1000000
\,1:10000000\,2:25000000\,3:50000000 \
-XX:ProfileLogOutNominationMinTimeSec=0:PT2M\, 1:PT15M\, 2:PT30M
\,3:PT60M \
—-jar myapp.jar

88

Detailed Information

Capping Profile Log Recording and Maximum Generations

We can make our example above more complex:

« After 10 minutes you want to stop recording.

* You want to record two generations of the profile.

Start your JVM with the following parameters:

java —-XX:0ptHubHost={host:port} \
—-XX:+EnableRNO \
—XX:ProfileName=MyApp-v3 \
—XX:ProfileLogTimeLimitSeconds=600 \
—XX:ProfileLogOutMaxNominatedGenerationCount=2 \
—jar myapp.jar

Priority of Generation Settings
Please take the default values into account when you define your own generation

settings as these can be overruled by other default settings. Let's look at an example:
* You define -XX:ProfileLogOutNominationMinTimeSec=900, but don't change
other settings.

+ The server-side default for the promotion of different generations, specifies the
following default 0:PT2M\, 1:PT15M\, 2:PT30M\, 3:PT60M for

readyNowOrchestrator.promotion.minProfileDurationPerGeneration.

+ As aresult, the 2nd and 3rd generation aren't promoted after 900 seconds, but after

30 and 60 minutes as specified in the defaults.

When you want to overrule the default settings, make sure to specify all appropriate

options.

Detailed Information
Optimizer Hub API

Optimizer Hub provides an API for several management tasks.

89

Monitoring Optimizer Hub

These methods are available on {MANAGEMENT_GATEWAY_IP}:{SERVICE_PORT}/..
and can be accessed without authentication. The service port typically is 8080. For
security reasons, by default, the APl is not exposed outside the cluster. Your network

administrator can provide you secure access to this endpoint.

APl Methods
Please check the documentation website (docs.azul.com) for the OpenAPI

documentation.

Monitoring Optimizer Hub
You can monitor your Optimizer Hub using the standard Kubernetes monitoring tools

(Prometheus and Grafana) and through log files.

Using Prometheus and Grafana

The Optimizer Hub components are already configured to expose key metrics for
scraping by Prometheus. Follow "Configuring Prometheus and Grafana" to set up these
monitoring tools and check "Using the Grafana Dashboard" for more info about the

different sections of the dashboard.

Retrieving Optimizer Hub Logs
All Optimizer Hub components, including third-party ones, log some information to

stdout . These logs are very important for diagnosing problems.

You can extract individual logs with the following command:
kubectl -n my-opthub logs {pod}

However by default Kubernetes keeps only the last 10 MB of logs for every container,
which means that in a cluster under load the important diagnostic information can be

quickly overwritten by subsequent logs.

You should configure log aggregation from all Optimizer Hub components, so that logs

are moved to some persistent storage and then extracted when some issue needs to be

90

Monitoring Optimizer Hub

analyzed. You can use any log aggregation One suggested way is to use Loki. You can

query the Loki logs using the logcli tool.

Here are some common commands you can run to retrieve Iogs:

Find out host and port where Loki is listening

export LOKI_ADDR=http://{ip-adress}: {port}

Get logs of all pods in the selected namespace

logcli query —-since 24h —--forward —-1imit=10000 '{namespace="zvm—
dev-3606"}"

Get logs of a single application in the selected namespace

logcli query ——-since 24h —--forward —--1imit=10000 ' {namespace="zvm-—
dev-3606" app="compile-broker"}'

Get logs of a single pod in the selected nhamespace

logcli query —-—since 24h ——-forward —--1limit=10000 '{namespace="zvm—
dev-3606", pod="compile-broker-5£fd956£f44f-d5hb2"}"

Extracting Compilation Artifacts
Optimizer Hub uploads compiler engine logs to the blob storage. By default, only logs

from failed compilations are uploaded.

You can retrieve the logs from your blob storage, which uses the directory structure
<compilationId>/<artifactName>.The <compilationId> starts with the vM-

1d which you can find in connected-compiler-%p.log:

91

https://grafana.com/oss/loki/
https://grafana.com/docs/loki/latest/getting-started/logcli/

Using the Grafana Dashboard

Log command-line option
—Xlog:concomp=info:file=connected-compiler-%p.log::filesize
=500M: filecount=20

Example:
[0.647s] [info] [concomp] [ConnectedCompiler] received new VM-Id:
4f762530-8389-4ae9-b6d4a-69bladaccct2

Note About gw-proxy Metrics

The gw-proxy component in Optimizer Hub uses, by default, /stats/prometheus as
target HTTP endpoint to provide metrics. Most other Optimizer Hub components use
/g/metrics. If you make manual changes in the configuration of the metrics for
individual Kubernetes Deployments in the Optimizer Hub installation, make sure that you
don't use the /g/metrics forthe gw-proxy deployment. Doing so would lead to

confusion when metrics are processed.

Using the Grafana Dashboard

A Grafana dashboard is available after it has been "configured”, to understand how your
Optimizer Hub instance is performing. This dashboard is divided into several sections.
The most important sections from user-perspective are described here. The other

sections are more oriented towards maintaining and troubleshooting of the installation.

> Overview

> Alerts

> Cloud Native Compiler

> ReadyNow Orchestrator

> Profile Synchronization

Overview

Provides a high-level view of the Optimizer Hub instance:

« The number of running Optimizer Hub components.

+ The number of connected JVMs, with basic overview (in local fallback, backlogged,...)

92

Using the Grafana Dashboard

+ Basic metrics about compilations, with "Time to clear optimization backlog" as the

most important value to monitor.

v Overview

VMs connected VM roundtrip time Server CPU utilization CPU usage by component

150K

8.05ms ': - < \

Server sizing

compile-broker
1
|
Al
Client JVMs ® Time to start compilation © Time to Clear Optimization Backlog

125

250 min

Alerts

vAlerts @ 1@

Container Restarts Failed Pods Network Errors

Container Terminated Reason Pod Failure Reason

Cloud Native Compiler
Monitoring of the Cloud Native Compiler feature. This is applicable for JVMs using the

Cloud Native Compiler.

93

~Cloud Native Compiler
Compilations requests procassed (success)

xopai

Compilation processing latancy (sucesss) [155]

GRPC calls (gateway-»complie-broker, success)

e

GRPC calllatency (gateway >compla-broker, success) [15s]

Smin

167 mi

os ok os0 e wm om0

— RED stariup = Campile was time regorisd by RED. = VWA siate quaries 1

VM state requests, total tine

2310wy
174 day

w18 ay

030

o> gtewsy) = RED-vcar

VM State Cache aperations

“owoo o o w0

sl Cet T . ol et

VM State Cache operation rate

800K e

800K reas

Complations finished par sacond

100 1200

ReadyNow Orchestrator

o0

noo

nao wo

Compiation queue

20K

Compilation requests processed (errors)

SO T w30 o0
= success error (code-eivery-compiation cancelled) = evictea
— oroppad engine net found) — aroppad (vm aiscan
Compilation protessing latency (succass)

s

250 min

wa o nw o

ot retsying ol request] m eror (1

istion procsesing latency ferrors)

= eyictsa (petrstying ot equest 90.95

woo e won w0

Suceess Mex

‘GRP calls (gateway - complie-broker, errors)

25510l
ey
50rag

Sooraqis

o o0& 030 woo
ED = GANCELLED = RESOURGE EXHAUSTED

9RPC calllatency (gateway»compile-broker, success)

a3 in

00
om0 w0

= Success QU85 = Success Mex
Time to start compliation histogram

250 min

|
oo w0 " W% o
— 0095 = Serversids queve G095

Compiler Engine CPU time

w87 min

333 rin

167 min

W0 w00 w30

sgatews m ioway) - ERROR o yvoo

= Reperied by Dellvery

VM Stat Cache getAll operations

1000
a0

VM stata requests, atency histogram

s

30 P00 oe30 ro

a-broke- galaway Inassured on complle-brokel, G095 OK

= compie-broker-»galeway measired on gateway), G095 ERRGR
VM State Cache latancy histogram
100

some

Compiler walt time
oo
oo%
anx
20%

oa30 o 0

1230

) = ertor vn Urveachable]

afana Dashboard

400

(rmstate abartec)

1o

renut-missing Q0.

fate aborted] G0.95

-dellury.comptation canceleg) Mex

aRPC cal latency (gateway +compils-broker, errors)

33 min

z50min

157 min

w30

187 rin

w0 a0

complle-biaker- gateway (messiced on gateway), G095 OK

gviewsy (oundo (o VM, G095 = AGO-campie-bioxes

00 1230 o0 13 1e0o

wos wmo w0

Wi wen

w0

wno oo

Complier wait time

Monitoring of the ReadyNow Orchestrator feature. This is applicable for JVMs using

Using the Grafana Dashboard

Optimizer Hub ReadyNow Orchestrator.

- ReadyNow Orchestrator &

Chunk download duration histogram [15s] Chunk upload duration

REST API requests rate

Profile Synchronization
Applicable when you have multiple Optimizer Hub clusters and profiles are synchronized

between them. This section provides the following info:

Profile sync latency

Profile sync rate: speed of value changes of the metric

Profile sync tasks finished

Synced bytes total: sum of the synced bytes

Sync task duration: the duration of each task

* Number of synced profiles rate

95

Troubleshooting Optimizer Hub

VLV TEEEY LT
MR LAR A] T

Troubleshooting Optimizer Hub
This page shows how to troubleshoot a misbehaving Optimizer Hub and any Azul Zing

Build of OpenJDK (Zing) instances using Optimizer Hub.

Client VM Troubleshooting
My application gc.log contains PROFERR Failed to connect with the server

and/or PROFERR Unable to load remote profile.

There is probably no —xx:0ptHubHost specified, or an incorrect address of the server
is provided. If no host is specified, the default value 1ocalhost:50051 is used instead
of the correct address of the Optimizer Hub service. Please check "Using ReadyNow

Orchestrator" for more information.

This can also be caused by trying to establish a TLS-encrypted connection with
-XX:+OptHubUseSSL to a server which expects unencrypted connections, or vice

versa.

Double-check your VM arguments. Ensure that VM is started with the

—-XX:OptHubHost= parameter pointing to the address of the Optimizer Hub gateway.

See "Connecting a JVM to a Cloud Native Compiler" for more details on Optimizer Hub-
related VM parameters and "Installing Optimizer Hub" for finding out the gateway

address.

96

Troubleshooting Optimizer Hub

My application running in a Cloud Native Compiler-enabled VM shows worse

performance than usually. What can | do?

1. Double-check VM arguments. Ensure that VM is started with the —XX:OptHubHost=

parameter pointing to the address of the Optimizer Hub gateway.

See "Connecting a JVM to a Cloud Native Compiler" for more details on Optimizer
Hub-related VM parameters and "Installing Optimizer Hub" for finding out the

gateway address.

2. Enable Optimizer Hub logging in VM using —-X1og:concomp parameter and look for
log messages that show the JVM connecting to and disconnecting from Optimizer
Hub.

o If the log says that the VM fails to connect to the service, check that the service is
up and running, check the network connectivity between JVM and service, and

check the value of —xX:0OptHubHost=.

o If the log says that VM disconnects from the service soon after connecting, the log
should also give the reason for disconnecting. The most frequent reason for such
disconnects is a missing Compiler Engine on the service, indicated by the
FAILED_PRECONDITION error code and message Compiler engine .. not

found. See "Registering a New Compiler Engine" for more information.

o If the connection between the VM and service is established and does not break,

then proceed to item #3.

3. Collect VM GC log, open it in GCLA and see top-tier compilation statistics. Top-tier
compilation stats can also be seen in VM compilation log (

-XX:+PrintCompilation).

o If stats show high top-tier compilation failure ratio, then it's time to troubleshoot

Cloud Native Compiler.

o Write down the VM ID seen in the VM concomp log, it can be used to filter service

events related to this particular VM.

97

Troubleshooting Optimizer Hub

You can find the VM ID in connected-compiler-%$p.log:

Log command-line option
—Xlog:concomp=info:file=connected-compiler-%p.log::filesize
=500M: filecount=20

Example:

[0.647s] [info] [concomp] [ConnectedCompiler] received new VM-Id:
4£f762530-8389-4ae9-b64a-69bpladaccct2

o Proceed to Cloud Native Compiler Server Troubleshooting.

4. Use the TTCOB metric to research possible problems.

An overloaded client (the JVM) can cause worse performance of Cloud Native
Compiler. This could be seen as a too high TTCOB metric. One example of such
overload is CPU saturation on JVM side. This can cause smaller amounts of
compilations being sent to Cloud Native Compiler but also a worse performance of
Cloud Native Compiler compilation because an overloaded JVM affects the

communication between the CNC Compiler and JVM itself.
o If TTCOB is over the threshold:

- Look at the "Compilations in progress" chart.

- If "Compilations" value hits the capacity, then the server is the bottleneck and

should be scaled.

- Otherwise the bottleneck is related to the per-VM limit on concurrent
compilations. It should be increased. Scaling server without increasing that per-

VM limit doesn't help.
o If TTCOB is below threshold:
« How much below threshold is it?

- If there is a gap between the actual TTCOB and the threshold, then Optimizer

Hub can be downscaled proportionally to the gap.

98

#cloud_native_compiler_troubleshooting

Troubleshooting Optimizer Hub

« Otherwise relax and don't touch anything.

5. If scaling compile-brokers doesn’t improve TTCOB, the culprit may be the cache.

A typical symptom is cache CPU usage hitting the ceiling, depending on the

workload. An example can be seen in this graph:

Per Pod CPU usage

== cache-9
== cache-14
== cache-10
== cache-4
cache-13

= cache-5
== cache-6
cache-15

cache-0
07:40

= ~anha9

If that's the case, one can modify simple sizing relationships to have more caches.

This is the relevant section in the values.yaml:

simpleSizing:
relationships:
brokersPerGateway: 30
brokersPerCache: 20

Settings brokersPerCache to a lower value (e.g. 15) results in having more cache

instances relative to compile-brokers.

| see occasional "compiler timeout" errors in service logs and/or grafana dashboard.

What's that?

Every compilation on Cloud Native Compiler has a time limit. By default it's 500

seconds.

« If that limit is exceeded, the first thing to check is network latency between VM and
Cloud Native Compiler using ping {opthub_host} . Latency should not exceed
single-digit milliseconds. If the latency is higher, CNC can't deliver its best

performance. Make sure to locate VMs close enough to CNC.

99

Troubleshooting Optimizer Hub

* You can use the "VM rountrip” widget in the Grafana dashboard to detect if this limit

is exceeded.

* In rare cases there are very large compilations that actually require that long. If that's
the case, compilation timeout can be changed by adding
-Dcompiler.timeout={N} flagto compile-broker, where {N} isthe numberin

seconds.

My application running in a Optimizer Hub-enabled VM behaves incorrectly or crashes.

What can | do?

1. Collect all VM logs and the hs_err* file and send it to Azul for analysis.

2. Run the application without the —xx:OptHubHost flag to verify that the problem is

specific to connecting to Optimizer Hub.

| sometimes see entries about failed compilations because of "ConnectedCompiler is

not yet ready", but | see it is compiling fine. Is that ok?

This may happen when running with SSL enabled. The VM keeps an open connection to
the service, but sometimes the connection can be reset or re-established. It may happen
that the VM tries to send a compilation request in the very moment. With SSL, the VM
and the service need to do a handshake to make sure the connection is trusted. It is
very quick, but it is possible the VM hits this small window. It is harmless as the

compilation is resubmitted the next moment.

Cloud Native Compiler Troubleshooting
JVM compilation log shows that top-tier compilations are started, but never finished.
What can | do?

This can be caused by one of these reasons:

* No compile-broker pods are running in the Optimizer Hub cluster. Make sure that at

least one compile-broker is up and running.

+ Cloud Native Compiler has too many compilation requests enqueued due to too

100

Troubleshooting Optimizer Hub

many VMs connected and it takes too long to provide compiled code. To confirm,
check the "Compilation Queues" chart in Grafana. Increase the number of compile-

broker replicas.

| see occasional "vm unreachable" in service logs and/or grafana dashboard. What's

that?

This is caused by the service’s inability to receive some information necessary for the
compilation from the JVM. It usually happens when the JVM disconnects from the
service for any reason, e.g. JVM termination or a network error. It's harmless. The

service just skips the compilation and proceeds to the next one.

ReadyNow Orchestrator Troubleshooting

ReadyNow profile reading timed-out with pre-main exceeding 60 seconds.

In case of a service misconfiguration with the Optimizer Hub not being deployed, and
compilation.limit.per.vm setting being set to a value higher than 0, Prime may
attempt to use the service for compilations to no avail. It might take some time for
Prime to automatically switch to the local Falcon compiler. This can severely impact the
ability of ReadyNow to pre-compile methods before the application load is started thus

limiting the overall effect of ReadyNow.

Known Issues
* VM crashes when there is not enough memory available on the system. The exact
amount of memory needed depends on the environment and the application. If you
see VM crashing, please try freeing memory (e.g. killing some memory-hungry

processes) or moving to a machine with more memory.

101

	Optimizer Hub Documentation
	Table of Contents
	About Optimizer Hub
	Interaction Between Optimizer Hub and JVMs
	About Cloud Native Compiler
	JIT Optimization
	Falcon JIT with CNC

	About ReadyNow Orchestrator
	Key Strengths of ReadyNow Orchestrator
	Video Introduction of ReadyNow Orchestrator

	Optimizer Hub Architecture Overview
	Architecture Overview
	Deployment Overview
	High Availability of Optimizer Hub

	Optimizer Hub Release Notes
	Optimizer Hub 1.11.0
	New Features
	Bug Fixes

	Optimizer Hub 1.10.1
	New Features

	Optimizer Hub 1.10.0
	New Features
	Bug Fixes
	Known Issues

	Optimizer Hub 1.9.5
	New Features
	Default Configuration Changes

	Optimizer Hub 1.9.4
	New Features
	Bug Fixes
	Known Issue

	Optimizer Hub 1.9.3
	New Features
	Bug Fixes
	Known Issue

	Optimizer Hub 1.9.2
	New Features
	Known Issue

	Optimizer Hub 1.9.1
	New Features

	Optimizer Hub 1.9.0
	New Features
	Bug Fixes

	Optimizer Hub 1.8.2
	New Features

	Optimizer Hub 1.8.1
	New Features
	Known Issues

	Optimizer Hub 1.8.0
	New Features
	Known Issues

	Cloud Native Compiler 1.7.1
	New Features

	Cloud Native Compiler 1.7.0
	New Features

	Cloud Native Compiler 1.6.3
	New Feature

	Cloud Native Compiler 1.6.2
	New Features
	Upgrade

	Cloud Native Compiler 1.6.1
	New Features
	Bug Fixes
	Known Issues

	Cloud Native Compiler 1.6.0
	New Features
	Bug Fixes
	Known Issues

	Cloud Native Compiler 1.5.0
	New Features
	Known Issues

	Cloud Native Compiler 1.4.0
	New Features
	Known Issues

	Cloud Native Compiler 1.3.0
	New Features
	Known Issues

	Cloud Native Compiler 1.2.0
	New Features

	Cloud Native Compiler 1.1.0
	New Features
	Known Issues

	Cloud Native Compiler 1.0.0
	New Features

	Azul Platform Core Third Party Licenses
	Optimizer Hub Installation Instructions
	Installing Optimizer Hub
	Supported Platforms
	Load Balancing
	Supported Kubernetes Environments

	Installing Optimizer Hub on Kubernetes
	Optimizer Hub Helm Charts
	Installing Optimizer Hub
	Cleaning Up

	Installing Optimizer Hub on AWS Elastic Kubernetes Service
	Configuring AWS S3 Storage
	Installing Optimizer Hub on EKS
	Setting Up an External Load Balancer
	Cleaning Up

	Installing Optimizer Hub on Microsoft Azure
	Configuring Azure Blob Storage

	Installing Optimizer Hub on Google Cloud
	Configuring GCP Blob Storage

	Installing on an S3 Compatible Environment
	Configuring Storage
	Configuring Compile Broker
	Configuring Gateway
	Configuring Cache

	Installing Optimizer Hub on Minikube
	Installing Minikube
	Installing Optimizer Hub
	Uninstalling Optimizer Hub from Minikube

	Upgrading Optimizer Hub
	Rolling Back to a Previous Version

	Configuring Optimizer Hub
	Optimizer Hub Generic Defaults
	Management Gateway Parameters
	Cross-Region Sync Parameters
	Blob Storage Auto Cleanup Parameters
	Simple Sizing Parameters
	SSL Parameters
	Storage Parameters

	Using Externally Defined Secrets
	Defining Your Secrets

	Configuring the Active Optimizer Hub Services
	Install Only ReadyNow Orchestrator
	Disabling Cloud Native Compiler on a Full Optimizer Hub Installation

	Configuring Optimizer Hub Host
	Host for Single Optimizer Hub service
	Host for High Availability and Failover

	Configuring ReadyNow Orchestrator
	Duration Configuration
	Configuring Cross-Region Synchronization of Profiles
	ReadyNow Orchestrator Defaults

	Configuring Blob Storage Auto Cleanup
	Code Cache Cleanup
	ReadyNow Profile Log Cleanup

	Configuring Optimizer Hub SSL Authentication
	SSL Configuration in Optimizer Hub
	SSL Configuration for Clients

	Configuring Prometheus and Grafana
	Prometheus Configuration Instructions
	Grafana Configuration Instructions

	Sizing and Scaling your Optimizer Hub Installation
	Service Scaling
	How Optimizer Hub Scales
	Scaling API

	JVM Connections to Optimizer Hub
	Connecting a JVM to Optimizer Hub
	Using Cloud Native Compiler
	Cloud Native Compiler JVM Options
	Fallback to Local JIT Compilation
	Logging and SSL

	Using ReadyNow Orchestrator
	Advantages of ReadyNow Orchestrator
	Creating and Writing To a New Profile Name
	ReadyNow Orchestrator JVM Options

	Registering a New Compiler Engine in Cloud Native Compiler
	Auto-Uploading Compiler Engines

	Understanding ReadyNow Orchestrator Generations
	Configuring Generations
	Basic Profile Recording with Default Generations
	Capping Profile Log Recording and Maximum Generations
	Priority of Generation Settings

	Detailed Information
	Optimizer Hub API
	API Methods

	Monitoring Optimizer Hub
	Using Prometheus and Grafana
	Retrieving Optimizer Hub Logs
	Extracting Compilation Artifacts
	Note About gw-proxy Metrics

	Using the Grafana Dashboard
	Overview
	Alerts
	Cloud Native Compiler
	ReadyNow Orchestrator
	Profile Synchronization

	Troubleshooting Optimizer Hub
	Client VM Troubleshooting
	Cloud Native Compiler Troubleshooting
	ReadyNow Orchestrator Troubleshooting
	Known Issues

