
Optimizer Hub Documentation



Table of Contents
About Optimizer Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Interaction Between Optimizer Hub and JVMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

About Cloud Native Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

JIT Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Falcon JIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

About ReadyNow Orchestrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Key Strengths of ReadyNow Orchestrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Optimizer Hub Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Architecture Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Deployment Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Optimizer Hub Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Optimizer Hub 1.8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Optimizer Hub 1.8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Known Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Optimizer Hub 1.8.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

Known Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Cloud Native Compiler 1.7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Cloud Native Compiler 1.7.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

New Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Cloud Native Compiler 1.6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

New Feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Cloud Native Compiler 1.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

New Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11



Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Cloud Native Compiler 1.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

New Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Bug Fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Cloud Native Compiler 1.6.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

New Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Bug Fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Cloud Native Compiler 1.5.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

New Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Cloud Native Compiler 1.4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

New Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Cloud Native Compiler 1.3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

New Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Cloud Native Compiler 1.2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

New Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Cloud Native Compiler 1.1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

New Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Cloud Native Compiler 1.0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

New Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Optimizer Hub Installation Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Installing Optimizer Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Supported Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15



Supported Kubernetes Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Installing Optimizer Hub on Kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

Optimizer Hub Helm Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

Installing Optimizer Hub. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

Configuring Persistent Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

Cleaning Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

Installing Optimizer Hub on AWS Elastic Kubernetes Service . . . . . . . . . . . . . . . . . . .  20

Provisioning on EKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

Setting Up an External Load Balancer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Installing Optimizer Hub on EKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Configuring AWS S3 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Cleaning Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Installing Optimizer Hub on Microsoft Azure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Configuring Azure Blob Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Installing Optimizer Hub on Google Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Configuring Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Configuring Compile Broker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Configuring Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Configuring Cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Installing Optimizer Hub on Minikube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Installing Minikube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

Installing Optimizer Hub. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

Uninstalling Optimizer Hub from Minikube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

Upgrading Optimizer Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

Changed Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

Upgrading to 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

Upgrade From Specific Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

Configuring Optimizer Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33



Optimizer Hub Generic Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

Database Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

Database Schema Paramaters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

Simple Sizing Paramaters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

SSL Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

Storage Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

Configuring the Active Optimizer Hub Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

Install Only the ReadyNow Orchestrator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

Disabling Cloud Native Compiler on a Full Optimizer Hub Installation . . . . . . . . . .  35

Configuring Optimizer Hub Host and Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

Determining the Optimizer Hub Endpoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

Specifying a Custom Compiler Engine Upload Port . . . . . . . . . . . . . . . . . . . . . . . . .  37

Configuring gRPC Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

Disabling Envoy in Optimizer Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

Configuring Optimizer Hub with SSL Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

Running Azul Zulu Prime JDK Clients with SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

Configuring the ReadyNow Orchestrator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

Duration Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

Configuring Clean Up of Old Profile Logs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

ReadyNow Orchestrator Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

Sizing and Scaling your Optimizer Hub Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

Scaling Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

Configuring Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

Configuring Autoscaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

JVM Connections to Optimizer Hub. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

Connecting a JVM to Optimizer Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

Using the Cloud Native Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48

Cloud Native Compiler JVM Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48



Fallback to Local JIT Compilation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

Logging and SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

Registering a New Compiler Engine in Cloud Native Compiler. . . . . . . . . . . . . . . . . . .  50

Auto-Uploading Compiler Engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

Inspecting the Installed Compiler Engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

Using the ReadyNow Orchestrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

Creating and Writing To a New Profile Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

ReadyNow Orchestrator JVM Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53

Basic Profile Recording with Server Defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59

Capping Profile Log Recording and Maximum Generations . . . . . . . . . . . . . . . . . .  59

Using a Previous Profile as the Basis of a New Profile Recording . . . . . . . . . . . . .  60

Detailed Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

Optimizer Hub API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

ReadyNow Orchestrator Admin API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

Monitoring Optimizer Hub. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

Grafana Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

Retrieving Optimizer Hub Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

Extracting Compilation Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

Troubleshooting Optimizer Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

Client VM Troubleshooting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66

Cloud Native Compiler Troubleshooting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69

ReadyNow Orchestrator Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70

Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70



About Optimizer Hub
Documentation for Optimizer Hub, version 1.8.2

Optimizer Hub is a component of Azul Platform Prime that makes your Java programs

start fast and stay fast. It consists of two services:

• Cloud Native Compiler: Provides a server-side optimization solution that offloads JIT

compilation to separate and dedicated service resources, providing more processing

power to JIT compilation while freeing your client JVMs from the burden of doing JIT

compilation locally.

• ReadyNow Orchestrator: Records and serves ReadyNow profiles. This greatly

simplifies the operational use of the ReadyNow, and removes the need to configure

any local storage for writing the profile. ReadyNow Orchestrator can record multiple

profile candidates from multiple JVMs and promote the best recorded profile.

NOTE

You can run both services with the default installation, or ReadyNow

Orchestrator only, depending on your use case.

Check the Architecture Overview to understand the components within

the Optimizer Hub system.

Interaction Between Optimizer Hub and JVMs

1. ReadyNow in the JVM asks ReadyNow Orchestrator in Optimizer Hub for a profile.

2. In the JVM, ReadyNow instructs Falcon what to compile based on the profile.

3. ReadyNow in the JVM sends back a new version of the profile to ReadyNow

Orchestrator in Optimizer Hub.

4. Falcon in the JVM asks the Cloud Native Compiler in Optimizer Hub to compile the

code (optional).

5. Cloud Native Compiler in Optimizer Hub sends the compiled code back to Falcon in

the JVM (optional).

About Optimizer Hub

1



► https://www.azul.com/wp-content/uploads/AZL106-ReadyNow-Orchestrator-Video-

Interaction Between Optimizer Hub and JVMs

2

https://www.azul.com/wp-content/uploads/AZL106-ReadyNow-Orchestrator-Video-AW.mp4


AW.mp4 (video)

About Cloud Native Compiler

Cloud Native Compiler is a component of Optimizer Hub that provides a server-side

optimization solution that offloads JIT compilation to separate and dedicated service

resources, providing more processing power to JIT compilation while freeing your client

JVMs from the burden of doing JIT compilation locally.

JIT Optimization

JIT optimization provides a multitude of benefits, including the ability to use speculative

optimizations that lead to faster eventual code. However, traditional on-JVM JIT

compilers must share the JVMs local CPU resources and compete with the application

logic in using that capacity. This presents several challenges:

• Optimization limitations:

◦ The JIT compiler is limited in resources. Resulting optimizations take time to

arrive at, and benefits are limited by the practical amount of time that applications

can wait for optimization and warm-up to complete.

◦ The JIT compiler is limited in how aggressively it can afford to optimize code. The

resulting optimizations are not as fast as they could be if the optimizer had more

resources available.

• Application performance limitations during warm-up:

◦ Optimization takes time to complete, and application code runs significantly

slower and less efficiently until the JIT compilers optimize it.

◦ JIT compilation work competes with the application for resources. Not all CPU

and memory resources are devoted to application threads.

• Resource allocation and utilization:

◦ Resources (CPU and memory capacity) used for JIT optimization are only needed

and utilized during warm-up, which is a fraction of the overall lifetime of each Java

process. Instances must reserve (and customers pay for) these under-utilized

About Cloud Native Compiler

3

https://www.azul.com/wp-content/uploads/AZL106-ReadyNow-Orchestrator-Video-AW.mp4


resources for the duration of the run of each application instance.

Falcon JIT

Azul Zulu Prime Builds of OpenJDK replace OpenJDK’s C2 JIT compiler with the Falcon

JIT compiler. The Falcon JIT compiler can run different levels of optimizations, and its

upper tier of optimizations produces optimized code that can run significantly faster

than code produced by the OpenJDK C2 compiler.

Using more aggressive optimization levels requires more resources, and when using

JVM-local JIT compilers for optimization, resource tradeoffs can often lead to a choice

of lowering optimization levels in favor of improved warmup times. Cloud Native

Compiler eliminates these tradeoffs by removing JIT compilation work from individual

JVMs, and shifting the work of the Falcon JIT compiler to a separate shared service.

This shift of work and associated resources allows the Cloud Native Compiler to apply

even the most aggressive Falcon JIT optimization levels without disrupting individual

JVM behavior. The Cloud Native Compiler can bring to bear practically unlimited Falcon

JIT compilation resources when a JVM needs them, and later scale those resources

down when they are unused and unneeded. This results in JVMs that can consistently

serve higher amounts of traffic in smaller footprint.

About ReadyNow Orchestrator

ReadyNow Orchestrator is a component of Optimizer Hub that records and serves

ReadyNow profiles. This greatly simplifies the operational use of ReadyNow when using

in large fleets of containerized environments.

• Centralized Profile Storage: You can configure your runtimes, using JVM command-

line parameters, to use ReadyNow Orchestrator for profile recording. ReadyNow

Orchestrator then records profiles from a meaningful subset of your JVMs, saving

your profiles either on Optimizer Hub’s built-in storage or on your S3-like object

storage.

• Profile Training and Optimization: ReadyNow Orchestrator also takes care of

recording multiple training generations of your profile to produce the best possible

About ReadyNow Orchestrator

4



optimization profile. ReadyNow Orchestrator then picks the best profile out of all the

possible candidates and streams it to any new JVM that is configured to request that

profile.

Key Strengths of ReadyNow Orchestrator

• No change to your deployment profile to manually record and distribute your

ReadyNow profiles. Everything is configured with a few JVM command-line

parameters.

• ReadyNow Orchestrator monitors your entire fleed of JVMs and picks the best

optimization profile rather than just using the profile produced by one JVM.

• Easy streaming of profiles into and out of containers, removing the need to configure

persistent storage or bake profiles into images each time you build a new image.

Optimizer Hub Architecture Overview

Optimizer Hub is shipped as a Helm chart and a set of docker images to be deployed

into a Kubernetes cluster. The Helm chart deploys different components based on the

use case.

Architecture Overview

Full Installation

In a full installation, all Optimizer Hub components are available and gateway, compile-

broker, and cache are scaled when needed.

ReadyNow Orchestrator Only

When only the ReadyNow Orchestrator is needed, a reduced set of the Optimizer Hub

components is deployed in the Kubernetes cluster.

Deployment Overview

With the default AWS setup (values-aws.yaml ), the setup is divided into three node

types (four if you also want to use the optional monitoring stack). Each node has a

role  label used to set the affinity for the nodes. If you set up your cluster on AWS EKS

Optimizer Hub Architecture Overview

5



using the Azul-provided "cluster config file", nodes are created with these labels.

NOTE

Make sure that the instances on which you run your Optimizer Hub on

have enough CPU to handle your requests. For example, for AWS

m5.2xlarge instances can be used, and on Google Cloud Platform c2-

standard-8 instances.

The nodes in a Optimizer Hub instance are as follows:

• Compile Broker - Performs JIT compilations.

◦ AWS node type: role=opthubserver

◦ System Requirements: CPU 8, RAM 32GB, HDD 100GB

• Cache - Stores information about the JVM that the compiler needs to perform

compilations.

◦ AWS node type: role=opthubcache

◦ System Requirements: CPU 8, RAM 32GB, HDD 100GB

◦ There is one pod per Cache node. To scale up, create more replicas.

• Infrastructure - Provides supporting functionality.

◦ AWS node type: role=opthubinfra

◦ System Requirements: CPU 8, RAM 32GB, HDD 100GB. Make sure the disk

connection is fast (use SSD) and that the storage volume is persistent between

runs.

◦ The pods included in this node are:

▪ db

▪ gateway

▪ storage

• Infrastructure - Non-Optimizer Hub supporting functionality, such as monitoring.

◦ AWS node type: role=infra

Optimizer Hub Architecture Overview

6



◦ System Requirements: CPU 8, RAM 32GB, HDD 100GB.

◦ Pods included in this node:

▪ grafana

▪ prometheus

Optimizer Hub Release Notes

Optimizer Hub 1.8.2

Release Date: December 19, 2023

New Features

• Fixes an issue in 1.8.1 where the cache component is not able to scale up.

• Fixes an issue that caused unexpected HTTP/1.x requests for GET /q/metrics  to

be reported in the logging.

Optimizer Hub 1.8.1

Release Date: December 6, 2023

New Features

Includes bug fixes for Optimizer Hub 1.8.0.

Known Issues

The message "Error occurred while executing task for trigger IntervalTrigger" may be

seen during initialization. This will resolve automatically after some time and work as

expected.

Optimizer Hub 1.8.0

Release Date: September 12, 2023

As Cloud Native Compiler expands its scope to offer more functionality than just

offloading compilations, it is time to rebrand the offering to better reflect what it does.

Starting with release 1.8, we are using the following naming:

Optimizer Hub Release Notes

7



• Optimizer Hub (was Cloud Native Compiler) - The name of the overall component

that you install on your Kubernetes cluster.

◦ Cloud Native Compiler (was Compiler Service) - The feature that performs the

compilation on Optimizer Hub.

◦ ReadyNow Orchestrator (was Profile Log Service) - The feature that records and

serves ReadyNow profiles to JVMs.

In Optimizer Hub 1.8, all major artifacts and command line switches use the updated

branding. This includes, but is not limited to:

• Command-line JVM options to configure Cloud Native Compiler and readynow-

orchestrator-jvm-options.

• Helm repository locations, names, and parameter names:

github.com/AzulSystems/opthub-helm-charts.

• REST API URLs.

If you are using release 1.7 and earlier, all of the previous spellings of artifacts still work.

Additionally, all of the pre-1.8 command-line arguments will continue to work for a

period of one year from the release of 1.8.

New Features

• Monitoring with Prometheus and Grafana is no longer included in the Optimizer Hub

Helm charts, but must be configured separately as described on Monitoring

Optimizer Hub.

• In the past, each release was bundled with the most likely JVM compiler engine. This

is no longer the cause, resulting in smaller images.

• Session rebalancing has been improved with an (optional) Envoy proxy, or any other

gRPC-aware load balancer/ingress in your Kubernetes cluster. More information can

be found on Configuring gRPC Proxy.

• Documentation has been extended with installation instructions for Google Cloud.

Optimizer Hub 1.8.0

8

https://github.com/AzulSystems/opthub-helm-charts
https://www.envoyproxy.io/


Known Issues

Fixed Ports for gRPC

The helm chart values contain the keys gateway.service.httpEndpoint.port

and gateway.service.grpc.port  to change the default ports 50051 and 8080. But

these values are hardcoded for the gRPC Envoy proxy, at this moment, and cannot be

changed with the mentioned helm chart keys.

Cloud Native Compiler 1.7.1

Release Date: June 30, 2023

New Features

• Profile Log Service now stores profile metadata in the blob storage. This means that

you can use AWS S3 or Azure Blob Storage to persist profile metadata and no longer

need to back up the database pod with persistent storage. This change also means

that when you upgrade from any release prior to 1.7.1 your previously collected

profiles are no longer available.

◦ Because of this change, the db component (MariaDB) is no longer needed when

running CNC in Profile Log Service-only mode.

• Profile Log service automatically cleans-up unused profile names when not

requested for a defined time. You can configure the duration with

profileLogService.cleaner.keepUnrequestedProfileNamesFor . See

readynow-orchestrator-defaults for more configuration information.

• New version of the Grafana monitoring dashboard with additional charts, and

updates related to changes in the metrics reported by CNC components.

Cloud Native Compiler 1.7.1

9



• You can define the profile log name with a Java property specified in the command

line, in the format %prop={PROPERTY}% . For more info, see substitution-macros.

• Improved setup for Profile Log Service-only deployment.

• CNC can automatically recover from DB pod restarts with loss of schema. To enable

this feature, set the following value in values-override.yaml :

dbschema.auto-recreate.enabled=true

• The hostPort  attribute is no longer required and included for the storage pod.

Cloud Native Compiler 1.7.0

Release Date: May 3, 2023

New Features

• Improved performance of autoscaling for the Compiler Service.

• Usability improvements to the Profile Log Service Admin REST API.

• Native blob storage on Azure and AWS. Extra documentation is provided on:

◦ configuring-aws-s3-storage

◦ configuring-azure-blob-storage

• Added documentation of the CNC API.

Cloud Native Compiler 1.7.0

10



Cloud Native Compiler 1.6.3

Release Date: May 24, 2023

New Feature

Fix to prevent the storage pod from crashing with persistent volume enabled on CNC

1.6.2.

Cloud Native Compiler 1.6.2

Release Date: April 27, 2023

New Features

• The CNC helm charts now use full names for the Docker images to prevent issues in

environments where a Docker Hub mirror is used.

• CNC pods can now be run as non-root user. The Docker images have a non-root user

and the Helm chart is instructing Kubernetes to use this non-root user for CNC pods.

Upgrade

Follow the steps described on "Upgrading Cloud Native Compiler".

Cloud Native Compiler 1.6.1

Release Date: March 1, 2023

New Features

• To avoid restarts of the Gateway pod when a large number of clients try to write

profile logs at the same time, a default limit has been configured.

• Upgrade from version 1.6.0 can be done with a helm upgrade, as described on

Upgrading Cloud Native Compiler.

Bug Fixes

• Gateway pod gets restarted when large number of clients try to write profile

simultaneously.

Cloud Native Compiler 1.6.3

11



Known Issues

• JVMs released before CNC 1.6.1 use HTTP for uploads of the compiler engine. Since

version 1.6.1, gRPC is used and the HTTP port is disabled by default in values.yaml.

Because of this, these JVMs will not be able to upload their appropriate compiler

engine to CNC.

When a CNC version prior to 1.6.1 already has been used and upgraded, the older

JVMs will keep working with CNC, because the upload is not needed anymore.

• The first attempt to download a previously existing profile, after CNC upgrade to

1.6.1 can fail with a timeout.

Cloud Native Compiler 1.6.0

Release Date: January 30, 2023

New Features

• Cloud Native Compiler has a new Profile Log Service. This service allows you to read

and write ReadyNow profile logs to Cloud Native Compiler. This simplifies getting

profile logs in and out of containers and other environments without persistent

storage. For more information on Profile Log Service configuration, see "Using the

Profile Log Service".

• Introduced ReadyNow-only deployment to helm charts.

Bug Fixes

• Multiple APIs failed with empty response.

• Cache requests latency increased manifold resulting in an increase in wait time and

overall compilation duration.

Known Issues

• In case of heavy applications, if you see anomalies in TTCOB, the problem can be

resolved by increasing the number of cache pods. For more info, see

cloud_native_compiler_troubleshooting.

Cloud Native Compiler 1.6.0

12



Cloud Native Compiler 1.5.0

Release Date: October 31, 2022

New Features

• Compiler Cache on by default.

• New Time to Clear Optimization Backlog metric in Grafana dashboard.

Known Issues

• Multiple pods can get evicted because of low ephemeral storage in a long-running

Code Cache cluster.

Cloud Native Compiler 1.4.0

Release Date: July 8, 2022

New Features

• Early access of the Compiler Cache. The Compiler Cache stores previously

performed optimizations and serves them from the cache rather than recompiling

whenever possible. Running your workloads with a Compiler Cache leads to lower

CNC CPU usage and faster warmup time.

Known Issues

• Compiler Cache is not scalable and too many connections will overload the

database.

• Multiple pods can get evicted because of low ephemeral storage in a long-running

Code Cache cluster.

Cloud Native Compiler 1.3.0

Release Date: May 9, 2022

New Features

• Simplified installation and configuration with Helm charts.

Cloud Native Compiler 1.5.0

13



Known Issues

• ZVM-23070 - Using Cloud Native Compiler with local ReadyNow can dramatically

increase the CPU required to deliver the compilations in time. Monitor your compiler

output and look for connections being rejected and the JVM switching to local

compilation, and scale out your CNC instance accordingly.

Cloud Native Compiler 1.2.0

Release Date: February 24, 2021

New Features

• Fallback to local JIT compilation when Cloud Native Compiler is unreachable or

underperforming.

• You can now provide an existing ReadyNow profile as the input of the

-XX:ProfileLogIn={file}  flag. Note that generating a ReadyNow profile using

the -XX:ProfileLogOut={file}  is not supported with Cloud Native Compiler yet.

Cloud Native Compiler 1.1.0

Release Date: December 20, 2021

New Features

• Built-in monitoring stack with Prometheus and Grafana.

• JDK 17 support.

Known Issues

• The CNC gateway is currently configured with one instance. Do not attempt to

increase the number of gateway instances.

• Extremely slow disk I/o configurations (with latencies in the multiple seconds) can

lead to internal crashes and data loss within CNC (due to Artemis crashes). Avoid

configuring CNC with pods using very slow HDD or network volumes.

Cloud Native Compiler 1.2.0

14



Cloud Native Compiler 1.0.0

Release Date: October 15, 2021

This is the first release of Cloud Connected Compiler (CNC), and we are really excited

about it!

New Features

• Cloud Native Compiler server able to provide JIT compilations to Azul Zulu Prime

Builds of OpenJDK 12.09.1.0 and later.

• Configuration files to provision an AWS Elastic Kubernetes Service cluster for your

CNC server.

• A sample Grafana dashboard for monitoring your CNC server.

Optimizer Hub Installation Instructions

Installing Optimizer Hub

Optimizer Hub is shipped as a Kubernetes cluster which you provision and run on your

cloud or on-premise servers.

Supported Platforms

Optimizer Hub is available for x64 platforms only.

Supported Kubernetes Environments

You can install Optimizer Hub on any Kubernetes cluster:

• Kubernetes clusters that you manually configure with kubeadm.

"Installing Optimizer Hub on Kubernetes".

• A single-node minikube cluster.

"Installing Optimizer Hub on Minikube".

• Managed cloud Kubernetes services such as Amazon Web Services Elastic

Cloud Native Compiler 1.0.0

15

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/


Kubernetes Service (EKS), Google Kubernetes Engine, and Microsoft Azure Managed

Kubernetes Service.

"Installing Optimizer Hub on Elastic Kubernetes Service".

NOTE
By downloading and using Optimizer Hub, you agree with the Azul

Platform Prime Evaluation Agreement.

Installing Optimizer Hub on Kubernetes

Optimizer Hub uses Helm as the deployment manifest package manager. There is no

need to manually edit any Kubernetes deployment manifests. You can configure the

installation overriding the default settings from values.yaml in a custom values file.

Here we refer to the file as values-override.yaml  but you can give it any name.

NOTE

This section describes setting up an evaluation or developer version of

Optimizer Hub without SSL authentication. To set up a production

version with full SSL authentication, see "Configuring Optimizer Hub with

SSL Authentication".

You should install Optimizer Hub in a location to which the JVM machines have

unauthenticated access. You can run Optimizer Hub in the same Kubernetes cluster as

the client VMs or in a separate cluster.

NOTE
If you are upgrading an existing installation, make sure to check

"Upgrading Optimizer Hub".

Optimizer Hub Helm Charts

Azul provides Optimizer Hub Helm Charts on GitHub, you can download the full package

as a zip.

Installing Optimizer Hub

1. Install Azul Zulu Prime Builds of OpenJDK 21.09.1.0 or newer on your client machine.

Installing Optimizer Hub on Kubernetes

16

https://www.azul.com/wp-content/uploads/Azul-Platform-Prime-Evaluation-Agreement.pdf
https://www.azul.com/wp-content/uploads/Azul-Platform-Prime-Evaluation-Agreement.pdf
https://github.com/AzulSystems/opthub-helm-charts/blob/master/values.yaml
https://github.com/AzulSystems/opthub-helm-charts
https://github.com/AzulSystems/opthub-helm-charts/archive/refs/heads/master.zip
https://github.com/AzulSystems/opthub-helm-charts/archive/refs/heads/master.zip
https://www.azul.com/downloads/#prime


2. Make sure your Helm version is v3.8.0  or newer.

3. Add the Azul Helm repository to your Helm environment:

helm repo add opthub-helm https://azulsystems.github.io/opthub-
helm-charts/
helm repo update

4. Create a namespace (i.e. my-opthub ) for Optimizer Hub.

kubectl create namespace my-opthub

5. Create the values-override.yaml  file in your local directory.

6. If you have a custom cluster domain name, specify it in values-override.yaml :

clusterName: "example.org"

7. Configure sizing and autoscaling of the Optimizer Hub components according to the

"sizing guide". By default, autoscaling is on and Optimizer Hub can scale up to 10

Compile Brokers. For example, you could set the following:

simpleSizing:
  vCores: 32
  minVCores: 32
  maxVCores: 106

8. If needed, configure external access in your cluster. If your JVMs are running within

the same cluster as Optimizer Hub, you can ignore this step. Otherwise, it is

necessary to configure an external load balancer in values-override.yaml .

For clusters running on AWS an example configuration file is available on Azul’s

GitHub.

9. Install using Helm, passing in the values-override.yaml . In case you don’t want

to install the full Optimizer Hub, but only a part of the services, first check

"Configuring the Active Optimizer Hub Services".

Installing Optimizer Hub on Kubernetes

17

https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-awslb.yaml
https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-awslb.yaml


helm install opthub opthub-helm/azul-opthub -n my-opthub -f values-
override.yaml

◦ In case you need a specific Optimizer Hub version, please use --version

1.8.2  flag. The command should produce output similar to this:

NAME: opthub
LAST DEPLOYED: Thu Apr  7 19:21:10 2022
NAMESPACE: my-opthub
STATUS: deployed
REVISION: 1
TEST SUITE: None

10. Verify that all started pods are ready:

kubectl get all -n my-opthub

Configuring Persistent Storage

By default, Optimizer Hub pods allocate data directories on the root disk or in an

emptyDir  volume, both residing in the pod’s ephemeral storage. If the pod dies, all data

is lost and has to be regenerated after restart.

When you move the pods' data directories to persistent volumes, the data survives pod

crashes, restarts and even scale down/up events. Furthermore, this allows you to lower

the local storage sizing of target Kubernetes worker nodes, since large data directories

will be stored in separate volumes outside of these worker nodes.

When you use persistent volumes, you create 2 additional Kubernetes objects per pod:

• persistentVolumeClaim  (PVC), whose name is derived from parent pod

• persistentVolume  (PV), which is allocated automatically by chosen the storage

class and has an auto-generated name.

PV and PVC objects lifecycles are separate from other Optimizer Hub Kubernetes

objects. When you uninstall Optimizer Hub using the helm chart, these objects remain in

Installing Optimizer Hub on Kubernetes

18



cluster for as long as the installation namespace exists. Removal of namespace or

manual deletion of PVCs within the namespace automatically removes their associated

PVs from the Kubernetes cluster as well.

You can configure persistent volumes for the db  and builtinStorage  components.

The configuration is the same for both components. Your target Kubernetes cluster

needs to have at least one storage class configured. By default, Optimizer Hub uses the

default configured storage class.

NOTE

If you are using AWS EBS Storage for your persistent storage, use gp3

volumes instead of gp2 volumes. gp2 volumes have have limited IOPS

which can affect Optimizer Hub performance. Additional configuration

info for AWS S3 Storage is configuring-aws-s3-storage.

NOTE
If you are using Azure Blob Storage, please check "Installing Optimizer

Hub on Azure" for additional settings.

Configuration with Custom Resources Values

Example pod sizing with 10GiB for root volume and 100GiB for data volume:

db:
  resources:
    requests:
      cpu: "5"
      memory: "20Gi"
      ephemeral-storage: "10Gi"
    limits:
      cpu: "5"
      memory: "20Gi"
      ephemeral-storage: "10Gi"
  persistentDataVolume:
    enabled: true
    size: "100Gi"

If you want to use recommended sizing of pods, you still need to explicitly override the

default size of the ephemeral storage. This is in order to not waste resources and

increase pod schedulability on smaller sized nodes.

Installing Optimizer Hub on Kubernetes

19



db:
  resources:
    requests:
      ephemeral-storage: "10Gi"
    limits:
      ephemeral-storage: "10Gi"
  persistentDataVolume:
    enabled: true
    size: "100Gi"

Configuration with Custom Storage Class

If your cluster has multiple configured storage classes, and you want to use a non-

default storage class, do the following:

db:
  resources:
  persistentDataVolume:
    enabled: true
    storageClassName: "my-storage-class"

Cleaning Up

To uninstall a deployed Optimizer Hub, run the following command:

helm uninstall opthub -n my-opthub
kubectl delete namespace my-opthub

Installing Optimizer Hub on AWS Elastic Kubernetes Service

If you are using Amazon Web Services, you can simplify the process of starting and

maintaining your cluster considerably by using the Elastic Kubernetes Service (EKS).

Provisioning on EKS

To provision Optimizer Hub on EKS:

1. Install and configure the eksctl  and aws  command-line tools.

If you don’t have permissions to set up networking components, have your

administrator create the Virtual Public Cloud.

Installing Optimizer Hub on AWS Elastic Kubernetes Service

20

https://aws.amazon.com/eks/
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html


2. Download opthub-install.zip. Navigate to the opthub-install/eks  directory. You

can pass the opthub_eks.yaml  file to the eksctl  to create the cluster. For more

information, look at the eskctl config file schema.

3. Replace the placeholders {your-cluster-name} , {your-region} , and {path-

to-your-key}  with the correct values.

4. If you are working with an existing VPC and do not want eksctl to create one,

uncomment the vpc  section and replace {your-vpc}  and {your-subnet}  with

the correct values.

5. Apply the file with the following command:

eksctl create cluster -f opthub_eks.yaml

This command takes several minutes to execute.

Successful command output:

2021-08-20 20:09:53 [¬] eksctl version 0.60.0
2021-08-20 20:09:53 [¬] using region eu-central-1
2021-08-20 20:09:54 [¬] setting availability zones to [eu-central-
1a eu-central-1b eu-central-1c]
2021-08-20 20:09:54 [¬] subnets for eu-central-1a -
public:192.168.0.0/19 private:192.168.96.0/19
2021-08-20 20:09:54 [¬] subnets for eu-central-1b -
public:192.168.32.0/19 private:192.168.128.0/19
2021-08-20 20:09:54 [¬] subnets for eu-central-1c -
public:192.168.64.0/19 private:192.168.160.0/19
2021-08-20 20:09:54 [¬] nodegroup "infra" will use "ami-
05f67790af078876f" [AmazonLinux2/1.19]
2021-08-20 20:09:54 [¬] using SSH public key
"/Users/XXXXXXXX/.ssh/id_rsa.pub" as "eksctl-eks-opthub-cluster-
nodegroup-infra-19:01:7b:fb:83:19:12:bb:17:59:40:37:22:dc:82:86"
2021-08-20 20:09:54 [¬] nodegroup "opthubservice" will use "ami-
05f67790af078876f" [AmazonLinux2/1.19]
2021-08-20 20:09:54 [¬] using SSH public key
"/Users/XXXXXXXX/.ssh/id_rsa.pub" as "eksctl-eks-opthub-cluster-
nodegroup-opthubserver-
19:01:7b:fb:83:19:12:bb:17:59:40:37:22:dc:82:86"
2021-08-20 20:09:54 [¬] nodegroup "opthubcache" will use "ami-
05f67790af078876f" [AmazonLinux2/1.19]
2021-08-20 20:09:54 [¬] using SSH public key

Installing Optimizer Hub on AWS Elastic Kubernetes Service

21

https://cdn.azul.com/optimizer_hub/1.8.2/opthub-install.zip
https://eksctl.io/usage/schema/


"/Users/XXXXXXXX/.ssh/id_rsa.pub" as "eksctl-eks-opthub-cluster-
nodegroup-opthubcache-
19:01:7b:fb:83:19:12:bb:17:59:40:37:22:dc:82:86"
2021-08-20 20:09:54 [¬] nodegroup "opthubinfra" will use "ami-
05f67790af078876f" [AmazonLinux2/1.19]
2021-08-20 20:09:54 [¬] using SSH public key
"/Users/XXXXXXXX/.ssh/id_rsa.pub" as "eksctl-eks-opthub-cluster-
nodegroup-opthubinfra-
19:01:7b:fb:83:19:12:bb:17:59:40:37:22:dc:82:86"
2021-08-20 20:09:55 [¬] using Kubernetes version 1.19
2021-08-20 20:09:55 [¬] creating EKS cluster "eks-opthub-cluster"
in "eu-central-1" region with un-managed nodes
2021-08-20 20:09:55 [¬] 4 nodegroups (opthubcache, opthubinfra,
opthubserver, infra) were included (based on the include/exclude
rules)
2021-08-20 20:09:55 [¬] will create a CloudFormation stack for
cluster itself and 4 nodegroup stack(s)
2021-08-20 20:09:55 [¬] will create a CloudFormation stack for
cluster itself and 0 managed nodegroup stack(s)
2021-08-20 20:09:55 [¬] if you encounter any issues, check
CloudFormation console or try 'eksctl utils describe-stacks
--region=eu-central-1 --cluster=eks-opthub-cluster'
2021-08-20 20:09:55 [¬] CloudWatch logging will not be enabled for
cluster "eks-opthub-cluster" in "eu-central-1"
2021-08-20 20:09:55 [¬] you can enable it with 'eksctl utils
update-cluster-logging --enable-types={SPECIFY-YOUR-LOG-TYPES-HERE
(e.g. all)} --region=eu-central-1 --cluster=eks-opthub-cluster'
2021-08-20 20:09:55 [¬] Kubernetes API endpoint access will use
default of {publicAccess=true, privateAccess=false} for cluster
"eks-opthub-cluster" in "eu-central-1"
2021-08-20 20:09:55 [¬] 2 sequential tasks: { create cluster
control plane "eks-opthub-cluster", 3 sequential sub-tasks: { wait
for control plane to become ready, 1 task: { create addons },
4 parallel sub-tasks: { create nodegroup "infra", create nodegroup
"opthubserver", create nodegroup "opthubcache", create nodegroup
"opthubinfra" } } }
2021-08-20 20:09:55 [¬] building cluster stack "eksctl-eks-opthub-
cluster-cluster"
2021-08-20 20:09:55 [¬] deploying stack "eksctl-eks-opthub-cluster-
cluster"
2021-08-20 20:10:25 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-cluster"
2021-08-20 20:10:55 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-cluster"
2021-08-20 20:19:57 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-cluster"
...
2021-08-20 20:20:58 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-cluster"
2021-08-20 20:25:06 [¬] building nodegroup stack "eksctl-eks-

Installing Optimizer Hub on AWS Elastic Kubernetes Service

22



opthub-cluster-nodegroup-opthubinfra"
2021-08-20 20:25:06 [¬] building nodegroup stack "eksctl-eks-
opthub-cluster-nodegroup-opthubcache"
2021-08-20 20:25:06 [¬] building nodegroup stack "eksctl-eks-
opthub-cluster-nodegroup-opthubserver"
2021-08-20 20:25:06 [¬] building nodegroup stack "eksctl-eks-
opthub-cluster-nodegroup-infra"
2021-08-20 20:25:07 [¬] deploying stack "eksctl-eks-opthub-cluster-
nodegroup-infra"
2021-08-20 20:25:07 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-nodegroup-infra"
2021-08-20 20:25:07 [¬] deploying stack "eksctl-eks-opthub-cluster-
nodegroup-opthubserver"
2021-08-20 20:25:07 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-nodegroup-opthubserver"
2021-08-20 20:25:07 [¬] deploying stack "eksctl-eks-opthub-cluster-
nodegroup-opthubcache"
2021-08-20 20:25:07 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-nodegroup-opthubcache"
2021-08-20 20:25:07 [¬] deploying stack "eksctl-eks-opthub-cluster-
nodegroup-opthubinfra"
2021-08-20 20:25:07 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-nodegroup-opthubinfra"
2021-08-20 20:25:23 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-nodegroup-infra"
2021-08-20 20:25:24 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-nodegroup-opthubcache"
...
2021-08-20 20:32:16 [¬] waiting for CloudFormation stack "eksctl-
eks-opthub-cluster-nodegroup-opthubcache"
2021-08-20 20:32:16 [¬] waiting for the control plane
availability...
2021-08-20 20:32:16 [¬] saved kubeconfig as
"/Users/XXXXXXXX/.kube/config"
2021-08-20 20:32:16 [¬] no tasks
2021-08-20 20:32:16 [¬] all EKS cluster resources for "eks-opthub-
cluster" have been created
2021-08-20 20:32:16 [¬] adding identity
"arn:aws:iam::912192438162:role/eksctl-eks-opthub-cluster-
nodegroup-infra-NodeInstanceRole-9VFWHMM30SSV" to auth ConfigMap
2021-08-20 20:32:16 [¬] nodegroup "infra" has 0 node(s)
2021-08-20 20:32:16 [¬] waiting for at least 1 node(s) to become
ready in "infra"
2021-08-20 20:32:49 [¬] nodegroup "infra" has 1 node(s)
2021-08-20 20:32:49 [¬] node "ip-192-168-90-183.eu-central-
1.compute.internal" is ready
2021-08-20 20:32:49 [¬] adding identity
"arn:aws:iam::912192438162:role/eksctl-eks-opthub-cluster-
nodegroup-opthubser-NodeInstanceRole-16JA2COTZHLWQ" to auth
ConfigMap

Installing Optimizer Hub on AWS Elastic Kubernetes Service

23



2021-08-20 20:32:49 [¬] nodegroup "opthubserver" has 0 node(s)
2021-08-20 20:32:49 [¬] waiting for at least 1 node(s) to become
ready in "opthubserver"
2021-08-20 20:33:49 [¬] nodegroup "opthubserver" has 1 node(s)
2021-08-20 20:33:49 [¬] node "ip-192-168-90-115.eu-central-
1.compute.internal" is ready
2021-08-20 20:33:49 [¬] adding identity
"arn:aws:iam::912192438162:role/eksctl-eks-opthub-cluster-
nodegroup-opthubcac-NodeInstanceRole-5KIIEOTU3ELU" to auth
ConfigMap
2021-08-20 20:33:49 [¬] nodegroup "opthubcache" has 0 node(s)
2021-08-20 20:33:49 [¬] waiting for at least 1 node(s) to become
ready in "opthubcache"
2021-08-20 20:34:21 [¬] nodegroup "opthubcache" has 1 node(s)
2021-08-20 20:34:21 [¬] node "ip-192-168-70-66.eu-central-
1.compute.internal" is ready
2021-08-20 20:34:21 [¬] adding identity
"arn:aws:iam::912192438162:role/eksctl-eks-opthub-cluster-
nodegroup-opthubinf-NodeInstanceRole-103G0W4M1XCZ7" to auth
ConfigMap
2021-08-20 20:34:21 [¬] nodegroup "opthubinfra" has 0 node(s)
2021-08-20 20:34:21 [¬] waiting for at least 1 node(s) to become
ready in "opthubinfra"
2021-08-20 20:35:37 [¬] nodegroup "opthubinfra" has 1 node(s)
2021-08-20 20:35:37 [¬] node "ip-192-168-46-62.eu-central-
1.compute.internal" is ready
2021-08-20 20:37:39 [¬] kubectl command should work with
"/Users/XXXXXXXX/.kube/config", try 'kubectl get nodes'
2021-08-20 20:37:39 [¬] EKS cluster "eks-opthub-cluster" in "eu-
central-1" region is ready

Here is everything that opthub_eks.yaml  creates in your AWS account:

• CloudFormation stacks for the main EKS cluster and each of the NodeGroups in the

cluster.

• A Virtual Private Cloud called eksctl-{cluster-name}-cluster/VPC. If you chose to use

an existing VPC, this is not created. You can explore the VPC and its related

networking components in the AWS VPC console. The VPC has all of the required

networking components configured:

◦ A set of three public subnets and three private subnets

◦ An Internet Gateway

Installing Optimizer Hub on AWS Elastic Kubernetes Service

24



◦ Route Tables for each of the subnets

◦ An Elastic IP Address for the cluster

◦ A NAT Gateway

• An EKS Cluster, including four nodegroups with one m5.2xlarge instance provisioned:

◦ infra  - For running Grafana and Prometheus.

◦ opthubinfra  - For running the Optimizer Hub infrastructure components.

◦ opthubcache  - For running the Optimizer Hub cache.

◦ opthubserver  - For running the Optimizer Hub compile broker settings.

• IAM artifacts for the Autoscaling Groups:

◦ Roles for the Autoscaler groups for the cluster and for each subnet

◦ Policies for the EKS autoscaler

Setting Up an External Load Balancer

If you need to connect to Optimizer Hub from outside the Kubernetes cluster, you need

to setup up a load balancer in front of the gateway instances:

To set up a load balancer, please follow AWS documentation regarding load balancer

controller setup.

Installing Optimizer Hub on EKS

Because opthub_eks.yaml  file creates the nodegroups in the cluster, you have to

pass in an additional configuration file when installing via Helm. The

opthub_eks.yaml  file is located in opthub-install/eks/values-eks.yaml  and

includes the nodegroup affinity settings and other settings EKS expects.

To continue with the full installation instructions for Optimizer Hub, please refer to

"Installing Optimizer Hub on Kubernetes". In case you don’t want to install the full

Optimizer Hub, but only a part of the services, check "Configuring the Active Optimizer

Hub Services".

Installing Optimizer Hub on AWS Elastic Kubernetes Service

25

https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html


To install using the values-eks.yaml  config file, run the following command:

helm install opthub opthub-helm/azul-opthub -n my-opthub -f values-
eks.yaml -f values-override.yaml

When adding multiple values files, remember the last one takes precedence.

Configuring AWS S3 Storage

To configure AWS S3 storage, use the following configuration. Ensure that your

Kubernetes nodes with opthub-compilebroker  and opthub-gateway  have RW

permissions to S3 bucket(s), and the target buckets exist.

Configuring Permissions

A role with the below policy must be assigned to instances (EC2, EC2 ASG, Fargate, etc)

for the opthub-compilebroker  and opthub-gateway  pods.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Action": [
        "s3:ListBucket"
      ],
      "Resource": [
        "arn:aws:s3:::opthub-*"
      ],
      "Effect": "Allow"
    },
    {
      "Action": [
        "s3:*Object"
      ],
      "Resource": [
        "arn:aws:s3:::opthub-*/*"
      ],
      "Effect": "Allow"
    }
  ]
}

Installing Optimizer Hub on AWS Elastic Kubernetes Service

26



Configuring S3 Storage

storage:
  blobStorageService: s3 # available options: builtin-storage, azure-
blob, s3
  s3:
    # opthub-* buckets examples: opthub-sandbox, opthub-demo
    commonBucket: opthub-storage0

Storage for ReadyNow Orchestrator

You can limit the usage of persistent storage by the ReadyNow Orchestrator with the

readynow-orchestrator-defaults.

Cleaning Up

Run the following command:

eksctl delete cluster -f opthub_eks.yaml

Installing Optimizer Hub on Microsoft Azure

To install Optimizer Hub on Azure, follow the general "Kubernetes" instructions. This

document provides additional configurations specific for Azure.

Configuring Azure Blob Storage

Following Helm values activate Azure Blob Storage. Currently, the default configuration

uses MinIO which is deployed as part of Optimizer Hub.

storage:
  blobStorageService: azure-blob
  azureBlob:
    endpoint: https://{yourendpoint}.blob.core.windows.net
    container: {your-container}
    authMethod: {method} # sas-token, connection-string, or default-
credentials

• When using authMethod:sas-token :

Installing Optimizer Hub on Microsoft Azure

27



secrets:
  azure:
    blobStorage:
      sasToken: "{your-token}"

• When using authMethod:connection-string :

secrets:
  azure:
    blobStorage:
      connectionString: "{your-connection-string}"

Storage for ReadyNow Orchestrator

You can limit the usage of persistent storage by the ReadyNow Orchestrator with the

readynow-orchestrator-defaults.

Installing Optimizer Hub on Google Cloud

To install Optimizer Hub on Google Cloud, please follow the instructions on "Installing

Optimizer Hub on Kubernetes".

If you want to install Optimizer Hub on Google Cloud with S3 compatibility mode,

instead of the builtin storage pod, you will need the following additional settings.

Configuring Storage

Use the S3  compatible storage and specify a bucket name in your values-

override.yaml :

storage:
  blobStorageService: s3
  s3:
    commonBucket: opthub-storage0

Configuring Compile Broker

Add the following extraArgumentsMap  section under compileBroker  in your

values-override.yaml :

Installing Optimizer Hub on Google Cloud

28



compileBroker:
  extraArgumentsMap:
    "quarkus.s3.endpoint-override": "https://storage.googleapis.com"
    "quarkus.s3.aws.credentials.type": static
    "quarkus.s3.aws.credentials.static-provider.access-key-id":
"{your access key}"
    "quarkus.s3.aws.credentials.static-provider.secret-access-key":
"{your secret key}"

Configuring Gateway

Add the following extraArgumentsMap  section gateway  in your values-

override.yaml :

gateway:
  extraArgumentsMap:
    "quarkus.s3.endpoint-override": "https://storage.googleapis.com"
    "quarkus.s3.aws.credentials.type": static
    "quarkus.s3.aws.credentials.static-provider.access-key-id":
"{your access key}"
    "quarkus.s3.aws.credentials.static-provider.secret-access-key":
"{your secret key}"

Configuring Cache

Add the following extraArgumentsMap  section cache  in your values-

override.yaml :

cache:
  extraArgumentsMap:
    "quarkus.s3.endpoint-override": "https://storage.googleapis.com"
    "quarkus.s3.aws.credentials.type": static
    "quarkus.s3.aws.credentials.static-provider.access-key-id":
"{your access key}"
    "quarkus.s3.aws.credentials.static-provider.secret-access-key":
"{your secret key}"

Installing Optimizer Hub on Minikube

Minikube can be used for testing and evaluating Optimizer Hub.

You should run Optimizer Hub on minikube only for evaluation purposes. Make sure

your minikube meets the 18 vCore minimum for running Optimizer Hub. Although

Installing Optimizer Hub on Minikube

29



minikube can run on multiple platforms, Optimizer Hub is only available for the x64

platform, so not on macOS with M1/2.

Installing Minikube

Install minikube for your platform following this installation guide.

Installing Optimizer Hub

Optimizer Hub uses Helm as the deployment manifest package manager. There is no

need to manually edit any Kubernetes deployment manifests.

1. Make sure your Helm version is v3.8.0  or newer.

2. Add the Azul Helm repository to your Helm environment:

helm repo add opthub-helm https://azulsystems.github.io/opthub-
helm-charts/
helm repo update

3. Create a namespace (i.e. my-opthub ) for Optimizer Hub.

minikube kubectl -- create namespace my-opthub

4. Create a configuration file values-minikube.yaml .

An example file is available on GitHub in the Azul "opthub-helm-charts" project, to

disable all resource definitions.

As the supplied values file for minikube resets pod resources to null, we can simply

add only the persistent volume section:

db:
  resources:
  persistentDataVolume:
    enabled: true

You can also set the volume size if the default 200Gi is too big for local testing:

Installing Optimizer Hub on Minikube

30

https://minikube.sigs.k8s.io/docs/start/
https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-minikube.yaml


db:
  resources:
  persistentDataVolume:
    enabled: true
    size: "50Gi"

5. Install using Helm, passing in the values-minikube.yaml . In case you don’t want

to install the full Optimizer Hub, but only a part of the services, first check

"Configuring the Active Optimizer Hub Services".

helm install opthub opthub-helm/azul-opthub -n my-opthub -f values-
minikube.yaml

The command should produce output similar to this:

NAME: opthub
LAST DEPLOYED: Mon Jan 30 14:35:29 2023
NAMESPACE: my-opthub
STATUS: deployed
REVISION: 1
TEST SUITE: None

6. Verify that all started pods are ready:

minikube kubectl -- get all -n my-opthub

Uninstalling Optimizer Hub from Minikube

Optimizer Hub can be removed from minikube using helm , after which the namespace

can also be deleted.

helm uninstall opthub -n my-opthub
minikube kubectl -- delete namespace my-opthub

Upgrading Optimizer Hub

Upgrade an existing Optimizer Hub installation to a newer version with the following

commands:

Upgrading Optimizer Hub

31



helm repo update
helm upgrade opthub opthub-helm/azul-opthub -n my-opthub -f values-
override.yaml
kubectl get all -n my-opthub

Changed Values

When upgrading an existing Optimizer Hub installation, make sure to validate your

values-override.yaml  file, as parameters might have changed.

Upgrading to 1.8

In Optimizer Hub 1.8, all major artifacts and command line switches use the updated

branding. This includes, but is not limited to:

• Command-line JVM options to configure "Cloud Native Compiler" and readynow-

orchestrator-jvm-options.

• Helm repository locations, names, and parameter names:

github.com/AzulSystems/opthub-helm-charts.

• "REST API URLs".

NOTE

If you are using release 1.7 and earlier, all of the previous spellings of

artifacts still work. Additionally, all of the pre-1.8 command-line

arguments will continue to work for a period of one year from the release

of 1.8.

Upgrade From Specific Versions

From Version 1.7.0

If you are upgrading from versions prior to 1.7.0, and you are using a custom

values.yaml  file with parameters for the storage component, rename the yaml block

from storage  to builtinStorage . For example:

Before

Upgrading Optimizer Hub

32

https://github.com/AzulSystems/opthub-helm-charts


storage:
  persistentDataVolume:
    enabled: true
    size: "200Gi"
    storageClassName: ""

After

builtinStorage:
  persistentDataVolume:
    enabled: true
    size: "200Gi"
    storageClassName: ""

From Version 1.6.1

If you are upgrading from version 1.6.1 with persistent storage, follow these steps

before running the helm upgrade:

1. Connect into the storage pod:

kubectl exec --stdin --tty storage-0 -- /bin/sh

2. Inside the pod run the following command to change permissions:

chown -R 10001 /data && chmod u+rxw /data

3. After the chmod  command is completed, you can exit the pod shell with ctrl-d  and

continue with the helm upgrade.

Configuring Optimizer Hub

Optimizer Hub Generic Defaults

Optimizer Hub is shipped as a Helm chart with all the defaults as specified in the

values.yaml file. Here you find a list of the most important generic values that can be

modified to match Optimizer Hub to your environment.

Specific settings can be found on the configuration pages of the service itself, for

Configuring Optimizer Hub

33

https://github.com/AzulSystems/opthub-helm-charts/blob/master/values.yaml


example, readynow-orchestrator-defaults.

Database Parameters

Option Description Default

db.enabled Define wether the database node is

installed.

Is set to false in ReadyNow Orchestrator

only mode, using values-disable-

compiler.yaml

true

Database Schema Paramaters

Option Description Default

dbschema.auto-recreate.enabled If enabled, will automatically recover from

database pod restarts with loss of

schema.

If you have a database and this database

is not using a persistence volume, this

setting must be set to true, otherwise you

will need manual interaction if the pod is

restored.

false

Simple Sizing Paramaters

See configuring-capacity.

SSL Parameters

See "Configuring Optimizer Hub with SSL Authentication".

Storage Parameters

Storage parameters depend on the platform of your deployment:

Optimizer Hub Generic Defaults

34



• storage

• configuring-aws-s3-storage

• configuring-azure-blob-storage

Configuring the Active Optimizer Hub Services

Optimizer Hub can run in different modes:

• Full: both the Cloud Native Compiler and ReadyNow Orchestrator are available.

This is the default configuration.

• ReadyNow only: only the ReadyNow Orchestrator is available.

Use the installation instructions below.

Install Only the ReadyNow Orchestrator

To install with only the ReadyNow Orchestrator, pass in values-disable-

compiler.yaml , together with your values-override.yaml :

helm install opthub opthub-helm/azul-opthub \
  -n my-opthub \
  -f values-override.yaml \
  -f values-disable-compiler.yaml

Disabling Cloud Native Compiler on a Full Optimizer Hub Installation

If you installed a full installation of full Optimizer Hub with Cloud Native Compiler and

ReadyNow Orchestrator, you can still disable Cloud Native Compiler by:

• Reinstalling as specified above.

• Or disable the Cloud Native Compiler globally using the

compilations.parallelism.limitPerVm  setting, with the value 0 , to override

the default value of 500 .

Configuring the Active Optimizer Hub Services

35

https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-disable-compiler.yaml
https://github.com/AzulSystems/opthub-helm-charts/blob/master/values-disable-compiler.yaml


Configuring Optimizer Hub Host and Port

As an Optimizer Hub administrator, you must provide users the host and ports for

connecting to the service. Customers should use the host and port name in the

OptHubHost  JVM parameter.

Determining the Optimizer Hub Endpoint

Use the IP address of the Optimizer Hub gateway  service as the connection endpoint

for your JVMs.

Using an External Load Balancer

It is strongly recommended to use an external load balancer. If you correctly defined the

load-balancer in values-override.yaml  as described in "Installing Optimizer Hub",

you can discover the external IP of the service using the following command:

kubectl describe service gateway -n my-opthub | grep 'LoadBalancer
Ingress:'
LoadBalancer Ingress:     internal-add1ff3e1591e4f93a49af3523b68e3b-
1321158844.us-west-2.elb.amazonaws.com

JVM customers then connect using the following command:

java -XX:OptHubHost=internal-add1ff3e1591e4f93a49af3523b68e3b-
1321158844.us-west-2.elb.amazonaws.com -jar my-app.jar

Connecting Without an External Load Balancer

If you did not set up an external load balancer, you can find the endpoint using the

following steps:

1. Run the following command:

kubectl -n my-opthub get services

2. Look for the gateway  service and note the ports corresponding to port 50051 inside

the container. This is the port to use for connecting VMs to this Optimizer Hub

cluster.

Configuring Optimizer Hub Host and Port

36



service/gateway NodePort    10.233.15.55    <none>
8080:31951/TCP,50051:30926/TCP  52d

In this example the ports is 31951 .

NOTE

Only the internal ports 8080  and 50051  in Optimizer Hub are fixed.

The port in each setup is a random value. You need to use this lookup

to find the port of your Optimizer Hub instance.

3. Run the kubectl get nodes  command and note the IP address or name of any

node.

4. Concatenate node IP with service ports to get something like

10.22.20.131:31951 . Do not prefix it with http:// .

5. JVM customers set -XX:OptHubHost=host:port  flag to the port mapped to

50051.

java -XX:OptHubHost=10.22.20.131:30926 -jar my-app.jar

Specifying a Custom Compiler Engine Upload Port

Cloud Native Compiler uses compiler engines to provide instructions for working with a

specific version of the JVM. These compiler engines are not shipped with Cloud Native

Compiler. When attempting to use Cloud Native Compiler for compilation, the JVM

checks if the right compiler engine is present and, if not, automatically uploads it to

Cloud Native Compiler.

If your Optimizer Hub instance is using default 8080 HTML ports, or you are fronting it

with a load balancer, then there is nothing the user needs to do to configure uploads

correctly. If you are connecting without a loadbalancer and are not using the default

8080 ports, follow the process described above to provide the JVM user with the host

and port mapped to 8080. The JVM user must specify this host/port in the

-XX:CNCEngineUploadAddress=host:port . In the above example, the host/port

combination is 10.22.20.131:31951 .

Configuring Optimizer Hub Host and Port

37



Configuring gRPC Proxy

Optimizer Hub comes with Envoy as the default gRPC proxy for optimal session

rebalancing. In case you want to disable Envoy in Optimizer Hub and use your own

instance, follow this guideline.

Disabling Envoy in Optimizer Hub

Add the following to values-override.yaml :

gwProxy.enabled=false

Configuring Optimizer Hub with SSL Authentication

While you can use Optimizer Hub without SSL authentication for development and

evaluation, it is highly recommended that you run your production Optimizer Hub with

SSL authentication.

To enable SSL authentication on your Optimizer Hub:

1. Establish your SSL certificate. In order to enable SSL encryption of the

communication between the JVM and Optimizer Hub, you will need to provide a

certificate and a corresponding private key in the pem  format.

NOTE

The common name field in the certificate must match the name of the

Optimizer Hub service as provided to client JVMs via the

—XX:OptHubHost  flag. Otherwise there may be issues when

connecting.

2. Enable SSL in your values-overrride.yaml  file:

ssl:
  enabled: true

3. Add your certificate and private key. This can be done in several ways:

a. The most secure way to add certificates is using a separate chain that manages

Configuring gRPC Proxy

38



your certificate. You can then point the deployment to a custom secret in the

installation namespace. Such a secret needs to have keys named cert.pem  and

key.pem .

ssl:
  secretName: "my-custom-secret"

b. You can add the certificate and private keys directly to the values.yaml as values.

This is the simplest way to run quick experiments in a controlled environment,

especially when you’re installing from the Helm repository. We do not recommend

this approach in production as it embeds private security credentials in a config

file:

ssl:
  value:
    cert: |-
      -----BEGIN CERTIFICATE-----
      ...
      -----END CERTIFICATE-----
    key: |-
      -----BEGIN PRIVATE KEY-----
      ...
      -----END PRIVATE KEY-----

c. If you downloaded and unpacked the Helm chart to a local directory, you can just

place files named cert.pem  and key.pem  into the root directory of your Helm

chart.

4. Perform Helm installation as shown in the "general installation guide".

Running Azul Zulu Prime JDK Clients with SSL

By default, the Azul Zulu Prime JDK connects to Optimizer Hub using SSL. If you

installed without enabling SSL, you must use the -XX:-OptHubUseSSL  flag to instruct

the Azul Zulu Prime JDK to allow unsecured connections to Optimizer Hub.

NOTE
Before version 1.8.0 the flag was called -XX:+/-CNCInsecure .

Because of this change, you will need to review your settings.

Configuring Optimizer Hub with SSL Authentication

39



If you attempt to connect to a Optimizer Hub that is running without SSL and do not

specify the -XX:-OptHubUseSSL  flag, you get the following error:

E1011 13:16:23.198074100      29 ssl_transport_security.cc:1446]
Handshake failed with fatal error SSL_ERROR_SSL:
error:1408F10B:SSL routines:ssl3_get_record:wrong version number.

To connect to Optimizer Hub using SSL, make sure the service certificate is trusted by

the client server where you run Azul Zulu Prime JDK. This can be achieved by having the

certificate signed by a publicly trusted certificate authority. If you have an internal CA

trusted within the company infrastructure, make sure it is trusted.

The exact process depends on your OS distribution. Follow the instructions for your OS

distribution to register the certificate on your client server. For example, on Ubuntu-

based distributions you run the following command:

sudo openssl x509 -in {path to cert.pem} -inform PEM -out
/usr/local/share/ca-certificates/cert.crt
sudo update-ca-certificates

Alternatively, you can explicitly instruct Azul Zulu Prime JDK to use and trust a specified

certificate on the filesystem by using the -XX:OptHubSSLRootsPath={path to

cert.pem}  flag.

If certificate validation fails, your .pem  file is missing or does not match the certificate

that you uploaded to Optimizer Hub, you get the following error:

[1.856s][info][concomp] [gRPCEvent] read error!
[1.856s][info][concomp] [gRPC processing] BidiStreamWrapper is dying,
finishing stream 0x7fbec00180f0 with status: failed to connect to all
addresses (14)

Configuring the ReadyNow Orchestrator

When you use the Optimizer Hub ReadyNow Orchestrator, JVMs all write profile log

candidates to unique profile names on the service. ReadyNow Orchestrator gathers all

of the candidates for a profile name and decides which is th best candidate to serve to

Configuring the ReadyNow Orchestrator

40



JVM clients requesting that profile name.

When considering what settings are set on the client versus on the service:

• Individual JVMs decide when ReadyNow Orchestrator should consider their profile

log is a suitable candidate for sharing with other JVMs. They can also override

server-side defaults for profile log nomination candidates and maximum profile log

size.

• ReadyNow Orchestrator also controls the rules for where to store ReadyNow profile

logs, when to clean up old logs, and service-wide defaults for profile log candidate

nomination and maximum profile log size.

Duration Configuration

You specify the value of duration properties in the format PnDTnHnMn.nS , where n is

the relevant days, hours, minutes or seconds part of the duration.

Configuring Clean Up of Old Profile Logs

ReadyNow Orchestrator performs automatic cleanup of unused profile logs in order to

fit collected data in the configured storage. When the data size in your storage exceeds

a threshold, ReadyNow Orchestrator deletes old profile logs, thus guaranteeing that a

promoted profile log is available for all profile names.

You can also configure the ReadyNow Orchestrator to delete unused profile names

completely after a given duration using the

readyNowOrchestrator.cleaner.keepUnrequestedProfileNamesFor

property in your values-override.yaml . For example, to keep unused profiles for 5

days, use the following:

readyNowOrchestrator.cleaner.keepUnrequestedProfileNamesFor=P5D

ReadyNow Orchestrator triggers cleanup when you have used around 60% of the

available space in your storage. If you are using a persistent volume to back up your

storage, ReadyNow Orchestrator calculates the threshold for triggering clean up

Configuring the ReadyNow Orchestrator

41

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/Duration.html#parse(java.lang.CharSequence)
#duration-configuration


automatically. If you are using S3 or Azure Blob Storage, there is no reliable way for

ReadyNow Orchestrator to calculate the size of the blob storage. You must therefore

specify the size using the

readyNowOrchestrator.cleaner.externalPersistentStorageSoftLimit

property, which by default, is 10Gb.

Note that depending on your usage, ReadyNow Orchestrator’s clean-up mechanism may

not be able to keep the actual size of your stored profiles below the size of your storage.

When you reach 90% usage, a warning is printed in the log of the gateway service.

If your storage fills up completely, JVMs attempting to write to the ReadyNow

Orchestrator receive an error.

ReadyNow Orchestrator Defaults

Optimizer Hub admins can set the following global defaults for ReadyNow profiles in

values-override.yaml :

Option Description Default

readyNowOrchestrator.debugInfoHist

oryLength

Limit of rolling profile history entries 100

readyNowOrchestrator.cache.enabled Enabling of caching the chunk content on

the gateway

true

readyNowOrchestrator.cache.maxSiz

eBytes

The fixed size of chunk content cache on

the gateway

500000000

readyNowOrchestrator.completedAft

er

Time required after the last profile update,

after which the profile is considered

completed and updates are no longer

possible, duration specified in format

PnDTnHnMn.nS .

PT24H

Configuring the ReadyNow Orchestrator

42

#duration-configuration
#duration-configuration


Option Description Default

readyNowOrchestrator.producers.ma

xConcurrentRecordings

The number of concurrent copies of a

specific generation ReadyNow

Orchestrator will accept before it tells

other JVMs trying to write the same

generation of the same profile name to

stop

5

readyNowOrchestrator.producers.ma

xPromotableGeneration

Maximum number of generations

ReadyNow Orchestrator will accept for a

profile name. Note that here is no

'unlimited' value available

3

readyNowOrchestrator.producers.ma

xProfileSize

Limit on the input profile size, in bytes. No

limit by default

0

readyNowOrchestrator.cleaner.enable

d

Enabling of automatic repository clean-up true

readyNowOrchestrator.cleaner.extern

alPersistentStorageSoftLimit

When your storage is backed by azure-

blob  or s3  storage, this determines the

threshold for the blob data usage, at

which the ReadyNow Orchestrator

initiates its cleanup process.

When your storage is backed by a

persistent storage volume, this threshold

is calculated automatically.

10Gi

Configuring the ReadyNow Orchestrator

43



Option Description Default

readyNowOrchestrator.cleaner.keepU

nrequestedProfileNamesFor

Time limit after which the profile name will

be removed if it was not requested within

the given duration specified in format

PnDTnHnMn.nS .

By default, no limit is defined.

0

Sizing and Scaling your Optimizer Hub Installation

In order for the Optimizer Hub to perform the JIT compilation in time, you need to make

sure the installation is sized correctly. You scale Optimizer Hub by specifying the total

number of vCores you wish to allocate to the service. The Helm chart automatically sets

the sizing of the individual Optimizer Hub components.

Scaling Overview

Scaling Optimizer Hub is controlled by how much capacity Optimizer Hub has to

process compilation requests. This is controlled by the amount of vCores Optimizer Hub

has been provisioned. Note that scaling is primarily a concern when discussing Cloud

Native Compiler. ReadyNow Orchestrator consumes much fewer resources than Cloud

Native Compiler and will often never need to scale beyond its minimum installation.

A critical metric to measure whether your Cloud Native Compiler is responding to

compilation requests in time is the Time to Clear Optimization Backlog (TCOB). When

you start a Java program, there is a burst of compilation activity as a large amount of

optimization requests are put on the compilation queue. Eventually, the compiler

catches up with the optimization backlog and all new compilation requests are started

within 2 seconds of being put on the compilation queue. The TCOB is the measurement,

for each individual JVM, of how long it took from the start of the compilation activity to

when the optimization backlog is cleared.

To find the right amount of vCores to provision for a job, first determine an acceptable

TCOB for your application. Different applications will find different TCOBs acceptable

Sizing and Scaling your Optimizer Hub Installation

44

#duration-configuration
#duration-configuration


depending on how many optimizations the program requests and how quickly you need

to warm it up. As a starting point, set the amount of time you want to wait before the

application is ready to accept requests as your target TCOB.

Perform a test run of a single JVM against your Cloud Native Compiler. In Grafana,

check the Time to Clear Optimization Backlog and Compilations in Progress graphs.

• If the maximum TCOB during your application’s warmup is lower than your target, you

can scale down the number of vCores provisioned for the job.

• If the maximum TCOB is higher than your target, check the Compilations in Progress

metric in Grafana. This metric shows you actual compilations in progress versus

Cloud Native Compiler capacity. If you are using the full capacity, add more vCores to

the capacity.

You should also check the client JVM logs to see whether the JVM fallback-to-local-jit-

compilation. JVMs switch to local compilation when Cloud Native Compiler becomes

unresponsive or tells the JVM that it cannot handle any new requests. You can also see

the number of local fallbacks in the Grafana dashboard.

Sizing and Scaling your Optimizer Hub Installation

45



Configuring Capacity

Depending on your autoscaling settings, there are three variables you will need to set:

simpleSizing:
  vCores: 32
  minVCores: 32
  maxVCores: 106

• vCores  - Total number of vCores that will be allocated. This does NOT include

resources required by monitoring, if you enable it. The minimum amount of vCores

for provisioning Cloud Native Compiler is 29.

• minVCores  - The minimum amount of resources that are always allocated when

autoscaling is enabled.

• maxVCores  - The maximum amount of resources that are allocated when

autoscaling is enabled.

Configuring Autoscaling

Autoscaling is enabled by default in the Helm chart. To disable autoscaling, add the

Sizing and Scaling your Optimizer Hub Installation

46



following to values-override.yaml :

autoscaler: false

If you use the Azul-provided "cluster config file", the pre-defined node groups for the

gateway , compile-broker  and cache  components already contain instructions to

work with Autoscaler. If the Autoscaler Node sees any unused nodes, it deletes them. If

a replication controller, deployment, or replica set tries to start a container and cannot

do it due to lack of resources, the Autoscaler Node knows which service is needed and

adds this service to the Kubernetes cluster. For more information, see

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/.

In order to use HPA autoscaling, you need install the Metrics Server component in

Kubernetes.

JVM Connections to Optimizer Hub

Connecting a JVM to Optimizer Hub

Whether you are using an Optimizer Hub instance to provide compilations, ReadyNow

profiles, or both, the first step is creating a connection between the JVM and the

Optimizer Hub instance. Ask your Optimizer Hub instance admin for the "host address

and port of the Optimizer Hub host" and enter it in the -XX:OptHubHost=host:port

JVM parameter flag.

Establishing a connection to Optimizer Hub does not force the JVM to fetch

compilations from Optimizer Hub and not perform compilations locally by default. See

the configuration flags on xref:../connecting/using-cloud-native-compiler.adoc

NOTE

In some cases, you may also need to enter an additional

-XX:CNCEngineUploadAddress=host:port  flag. Ask your

Optimizer Hub service admin if this is needed.

JVM Connections to Optimizer Hub

47

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/#metrics-server


Using the Cloud Native Compiler

You configure an Azul Zulu Prime Build of OpenJDK (Azul Zulu Prime JVM) to request

compilations from Cloud Native Compiler by specifying the IP address of the service

along with other command-line options. If the Cloud Native Compiler cannot respond to

the compilation requests in time, the Azul Zulu Prime JVM switches to local JIT

compilation until the service recovers.

Cloud Native Compiler JVM Options

NOTE

The minimum JVM options to request compilations from Cloud Native

Compiler are -XX:OptHubHost={host:port}  and

-XX:+CNCEnableRemoteCompiler .

Command Line Option Description Default

-XX:OptHubHost={host:port} Address where Optimizer Hub is listening.

The default is localhost:50051 . See

"Configuring Optimizer Hub Host and Port"

for instructions on determining the correct

host and port.

-XX:[+/-]CNCEnableRemoteCompiler Allows usage of the remote compiler

when Cloud Native Compiler has

established a connection.

false

-XX:CNCEngineUploadAddress={host:

port}

Address to upload the compiler engine.

Only needed when your Optimizer Hub has

non-standard ports. See custom-port.

-XX:[+/-]CNCAbortOnBadChannel With this flag, the JVM crashes if it loses

connection with a Cloud Native Compiler.

false

Using the Cloud Native Compiler

48



Command Line Option Description Default

-XX:[+/-]OptHubUseSSL Instructs the Azul Zulu Prime JVM to

communicate directly with Optimizer Hub

without using SSL. Use this option if you

installed Optimizer Hub without SSL.

true

-XX:OptHubSSLRootsPath={path to

cert.pem}

Instructs the Azul Zulu Prime JVM to use

and trust a specified SSL certificate on the

filesystem.

-Xlog:[+/-]concomp Display messages describing

communication with Optimizer Hub.

false

Fallback to Local JIT Compilation

When you connect an Azul Zulu Prime JVM to a Cloud Native Compiler, the JVM

attempts to fetch all JIT compilations from the service. If the Cloud Native Compiler

cannot meet the JVM’s requests in time, the JVM automatically falls back to performing

optimizations on the client. Factors that can cause a Cloud Native Compiler to not meet

optimization demand include:

• The service does not have the corresponding "Compiler Engine" installed. To force an

Azul Zulu Prime JVM to fail when requesting optimizations from a Cloud Native

Compiler that doesn’t have the corresponding Compiler Engine installed, use the

-XX:+CNCAbortOnBadChannel  flag.

• The service is down or cannot be reached.

• The service does not have enough capacity to meet the optimization requests. If you

have autoscaling enabled, this is often a temporary problem as new resources come

online. See "Sizing and Scaling your Optimizer Hub Installation" for more info.

When an Azul Zulu Prime JVM switches to local JIT compilation, it keeps checking

whether Cloud Native Compiler is ready to perform optimizations. Once Cloud Native

Using the Cloud Native Compiler

49



Compilation is back online and healthy, the Azul Platform Prime JVM switches back to

requesting optimizations from the service.

The following output in the JVM concomp log show when fallback to local JIT

compilation is enabled and disabled:

[110,991s][info   ][concomp] [LocalFallback] local compilation queue
disabled
[111,018s][info   ][concomp] [LocalFallback] local compilation queue
enabled

Logging and SSL

To view compiler info and ensure that the JVM is correctly connecting to Optimizer Hub,

use the -Xlog:concomp  flag.

By default the Azul Zulu Prime JDK connects to Optimizer Hub using SSL. If you did not

enable SSL during Optimizer Hub deployment, you must use the -XX:-OptHubUseSSL

flag to instruct the Azul Zulu Prime JDK to connect without SSL.

If you attempt to connect to Optimizer Hub, running without SSL, and do not specify the

-XX:-OptHubUseSSL  flag, you get the following error (visible with the

-Xlog:concomp  flag):

E1011 13:16:23.198074100      29 ssl_transport_security.cc:1446]
Handshake failed with fatal error SSL_ERROR_SSL: error:1408F10B:SSL
routines:ssl3_get_record:wrong version number.

Registering a New Compiler Engine in Cloud Native Compiler

Since different versions of Azul Zulu Prime JVMs may require different compiled code,

Optimizer Hub’s Cloud Native Compiler must be able to produce different versions of

compiled code simultaneously. You do not need to create a separate Optimizer Hub

instance for each application or different Java version.

Cloud Native Compiler does not have its own compiler - it is just server-side

infrastructure for running the JIT compiler that ships inside of Azul Zulu Prime Builds of

Registering a New Compiler Engine in Cloud Native Compiler

50



OpenJDK. This compiler is uploaded to Cloud Native Compiler from the JVM in the form

of a Compiler Engine.

Each version of Azul Zulu Prime JVM contains a signed Compiler Engine distributable.

The JVM auto-uploads any missing compiler engine on startup. Compiler Engines are

signed to prevent malicious versions of Compiler Engines from being installed.

If an Azul Zulu Prime JVM connects to a Cloud Native Compiler service that does not

have the corresponding Compiler Engine installed, the JVM will automatically switch to

performing optimizations on the client VM.

NOTE

Cloud Native Compiler does not keep any persistent record of compiler

engines. If a JVM requests compilations from Cloud Native Compiler that

does not have the corresponding compiler engine, the JVM switches to

local JIT compilation and starts auto-uploading the compiler engine for

future use.

Auto-Uploading Compiler Engines

For JVMs connecting to Cloud Native Compiler in the same Kubernetes cluster, or

connecting to Cloud Native Compiler that is fronted by an external load-balancer, auto-

uploading works with no additional configuration.

For JVMs connecting to Cloud Native Compiler in an external Kubernetes cluster with

no external load-balancer, pass the IP address and port of Cloud Native Compiler’s

gateway service in the --XX:CNCEngineUploadAddress  flag. See "Connecting a

JVM to a Cloud Native Compiler" for how to get the IP address of the gateway  service.

Make sure you use the port that is mapped to 8080 in the gateway  service.

Inspecting the Installed Compiler Engines

Each Compiler Engine has a Compiler Engine ID. You can view all of the Compiler

Engines that are installed on a Cloud Native Compiler by calling the /compiler-

engines  REST API on the gateway  service’s 8080  port when calling from inside the

cluster or the external port that is mapped to 8080  when calling from outside the

Registering a New Compiler Engine in Cloud Native Compiler

51



cluster.

Using the ReadyNow Orchestrator

Using ReadyNow involves two distinct phases:

• Recording a good profile log that accurately captures the usage pattern you want to

warm up. Recordings can be refined automatically through repetitive training cycles.

• Using the profile log as the input to newly started VMs.

Using the Optimizer Hub ReadyNow Orchestrator to record and serve profile logs,

greatly simplifies the operational use of ReadyNow.

• There is no need to configure any local storage for writing the profile log.

• ReadyNow Orchestrator handles recording multiple profile candidates from multiple

JVMs and promoting the best recorded profile log. You no longer need to manually

prepare a profile and then distribute it before rolling out new versions of your code.

Instead, you can generate the profile automatically in production as part of your fleet

restart.

• ReadyNow Orchestrator monitors the optimization profiles of an entire fleet of JVMs

rather than just one JVM, intelligently picking the best one.

Creating and Writing To a New Profile Name

You use the ReadyNow Orchestrator by "creating a connection to the Optimizer Hub"

and specifying the criteria for reading and writing profile logs. All of the necessary

options can be specified as command-line arguments to the Java process at the time of

deployment.

The basic lifecycle of using ReadyNow profile logs is as follows:

• The JVM streams profile log output to the ReadyNow Orchestrator, giving the output

a unique profile name.

• Based on basic criteria specified in the command-line arguments, the JVM

nominates the output profile log as a candidate for sharing with other JVMs.

Using the ReadyNow Orchestrator

52

https://docs.azul.com/prime/Use-ReadyNow


• The ReadyNow Orchestrator deals with candidate profile logs arriving from various

JVMs that use the same profile name.

• Whenever the service receives a request for a profile log with a given profile name, it

examines the candidates it has collected and serves up the best one. This can

change over time as the ReadyNow Orchestrator receives new and more complete

profile log candidates.

• JVMs can request multiple generations of a profile log. Rather than starting with no

input profile log and recording its output log based on the regular JIT profiling

process, the JVM can take a profile log as the input and further refine the profiling

information, recording its experience as a new generation of that profile log. If you

need to minimize the chances of having any deoptimizations through the life of your

Java program, it is sometimes beneficial to record several generations. The

ReadyNow Orchestrator always serves the newest generation for a profile name to

JVMs. JVMs can cap the number of generations that they write out to avoid

developing the profile forever.

ReadyNow Orchestrator JVM Options

The following options are available in Azul Prime when using the ReadyNow

Orchestrator with Optimizer Hub:

Command Line Option Description Default

-XX:OptHubHost={host:port} Address where Optimizer Hub is listening. The default is

localhost:50051 . See "Connecting a JVM to Optimizer

Hub" for how instructions on determining the correct host

and port.

null

Using the ReadyNow Orchestrator

53



Command Line Option Description Default

-XX:ProfileLogName={profil

ePath}

Name of the profile that the JVM both reads

from and writes to. Use of this flag is equivalent

to using

-XX:ProfileLogIn={profilePath}

-XX:ProfileLogOut={profilePath} , and

is the preferred way to specify profile names

when different input and output names are not

needed. If prefixed with opthub:// ,

{profilePath}  is used as the profile name in

the ReadyNow Orchestrator. If not prefixed with

opthub:// , {profilePath}  is interpreted as

a file path on the JVM.

null

-XX:ProfileLogOut={profileP

ath}

The ProfileLogOut enables Azul Zulu Prime JVM

to record compilations from the current run.

{profilePath}  is the name of the profile that

the JVM reads as input to ReadyNow. If prefixed

with opthub:// , {profilePath}  is used as

the profile name in the ReadyNow Orchestrator.

If not prefixed with opthub:// ,

{profilePath}  is interpreted as a file path on

the JVM.

null

Using the ReadyNow Orchestrator

54



Command Line Option Description Default

-XX:ProfileLogIn={profilePat

h}

The ProfileLogIn allows Azul Zulu Prime JVM to

base its decisions on the information from a

previous run. The current ProfileLogIn file

information will be read in its entirety - before

Azul Zulu Prime JVM starts to create a new

ProfileLogOut log. {profilePath}  is the name

of the profile that the JVM reads as input to

ReadyNow. If prefixed with opthub:// ,

{profilePath}  is used as the profile name in

the ReadyNow Orchestrator. If not prefixed with

opthub:// , {profilePath}  is interpreted as

a file path on the JVM.

null

-XX:ProfileLogOutNominatio

nMinSize

Indicate to server that the produced profile is

eligible for promotion after specified amount of

bytes recorded.

0  = any size eligible

-1  = will never be promoted

1M

-XX:ProfileLogOutNominatio

nMinTimeSec

When used with ReadyNow Orchestrator, the

minimum time, in seconds, a profile must record

before ReadyNow Orchestrator will nominate it

as a candidate.

0  = any duration eligible

-1  = will never be promoted

120

Using the ReadyNow Orchestrator

55



Command Line Option Description Default

-XX:ProfileLogOutMaxNomi

natedGenerationCount

When used with ReadyNow Orchestrator,

specifies the maximum generation of a profile

that a VM will nominate. This JVM command

line parameter overrides the serverside default

to configure ReadyNow Orchestrator.

0  = unlimited

0

-XX:ProfileLogMaxSize={val

ue in bytes}

Specifies the maximum size that a ReadyNow

profile log is allowed to reach. Profiles will be

truncated at this size, regardless of whether the

application has actually been completely

warmed up.

This JVM command line parameter overrides the

serverside default to configure ReadyNow

Orchestrator.

It is recommended to either not set this size

explicitly, or set it generously if required, for

example:

-XX:ProfileLogMaxSize=1G

0  = unlimited

0

Using the ReadyNow Orchestrator

56



Command Line Option Description Default

-XX:ProfileLogTimeLimitSec

onds={value in seconds}

Instructs ReadyNow to stop adding to the profile

log after a period of N seconds regardless of

where the application has been completely

warmed up. It is recommended to either not set

this size explicitly, or set it generously if

required.

0  = unlimited

0

-XX:ProfileLogDumpInputTo

File={name}

Dumps input profile to the specified path. For

debugging purposes only.

null

-XX:ProfileLogDumpOutputT

oFile={name}

Dumps output profile to the specified path. For

debugging purposes only.

null

-XX:RNOConnectionTimeout

Millis

Timeout on establishing remote connection and

timeout on interval between downloading two

chunks. Specified in milliseconds.

5000

-XX:ProfileLogOutVerbose Enables logging of verbose, optional tracing

information in -XX:ProfileLogOut

true

Substitution Macros

The profile name is the central organizing attribute that the ReadyNow Orchestrator

uses to group together profile logs. ReadyNow Orchestrator regards all candidates it

receives that contain the same profile name as being for the same application, with no

further knowledge of what code was actually runs. This poses the danger of

accidentally using the same profile name for two different applications. For example, if

a user copies and pastes the command-line arguments, including the profile name, from

a production application and uses it to run HelloWorld, the HelloWorld profile could, in

Using the ReadyNow Orchestrator

57



some cases, replace your valid production application profile.

To avoid this danger, you can use substitution macros in your profile name to limit the

likelihood of profile name clashes between different applications. Each macro unfolds

to a 4-byte hash string taken from a particular plain-text string corresponding to a

property:

Macro Description

%classpathhash Hashed user-defined Java class path string

%vmargshash Hashed JVM arguments string

%vmflagshash Hashed JVM flags string

%cmdlinehash Hashed string containing all plain-text values from above macros. Input

values are concatenated to one string: Java class path string + JVM

arguments string + JVM flags string. Afterwards, 4-bytes hash is applied to

concatenated result.

%jdkver Hashed JDK version number converted to string

%jvmver Hashed JVM version number converted to string

%prop={PROPERTY}

%

Substition macro defining the profile log name. This gets

replaced with the value of the corresponding Java system

property. Provide these properties to the JVM on startup with

-Dprop=value .

For example:

-Dmyprofilename=test-profileout \
  -XX:ProfileLogOut=opthub://%prop=myprofilename%

Using the ReadyNow Orchestrator

58



Basic Profile Recording with Server Defaults

In its most basic form, you just let the server-side defaults do all the work. By default,

ReadyNow Orchestrator will nominate profile logs after three full generations and does

not place a limit on log size. Suppose you want to record a new profile while deploying

code to a fleet running in production. Run with the following options:

java -XX:OptHubHost=TestEnvOptHubHost \
    -XX:ProfileLogName=opthub://MyApp-v3 \
    -jar myapp.jar

In this case, all JVMs nominate their logs for promotion after two minutes of recording

and keep recording until the JVM shuts down. For best results, do a test run in a canary

instance for at least two minutes and if possible a full ten minutes. This creates

generation 1 of your profile. Then restart your fleet as normal. As JVMs start up, they

receive a profile from ReadyNow Orchestrator and check the generation number. If that

number is less than the server-side default maximum of 3, the JVM writes out the next

generation of the profile. Once there is a valid generation 3 of the profile on ReadyNow

Orchestrator, none of the JVMs write any more output.

Capping Profile Log Recording and Maximum Generations

We can make our example above more complex:

• A profile needs to record for at least 2 minutes to be nominated.

• After 10 minutes you want to stop recording.

• You want to record two generations of the profile.

Start your JVM with the following parameters:

java -XX:OptHubHost=TestEnvOptHubHost \
    -XX:ProfileLogName=opthub://MyApp-v3 \
    -XX:ProfileLogTimeLimitSeconds=600 \
    -XX:ProfileLogOutMaxNominatedGenerationCount=2 \
    -jar myapp.jar

Using the ReadyNow Orchestrator

59



Using a Previous Profile as the Basis of a New Profile Recording

When you’re deploying version 3 of MyApp, you often have a valid profile for version 2.

In most cases, you change a small portion of your code between versions and most of

the previous profile is still valid for your new version. When you feed in the previous

version of the profile as input to recording the new version of the profile, you can in

most cases eliminate the need to do multiple training iterations.

Using our above example, perform one run of the full ten minutes in a canary with the

following settings:

java -XX:OptHubHost=TestEnvOptHubHost \
    -XX:ProfileLogIn=opthub://MyApp-v2 \
    -XX:ProfileLogOut=opthub://MyApp-v3 \
    -XX:ProfileLogTimeLimitSeconds=600 \
    -XX:ProfileLogOutMaxNominatedGenerationCount=1 \
    -jar myapp.jar

To restart the rest of your fleet with the following settings:

java -XX:OptHubHost=TestEnvOptHubHost \
    -XX:ProfileLogName=opthub://MyApp-v3 \
    -XX:ProfileLogTimeLimitSeconds=600 \
    -XX:ProfileLogOutMaxNominatedGenerationCount=1 \
    -jar myapp.jar

Detailed Information

Optimizer Hub API

Optimizer Hub provides an administration API with the following methods.

ReadyNow Orchestrator Admin API

These methods are available on {GATEWAY_IP}:{SERVICE_PORT}/rno/…  and can

be accessed without authentication. The service port typically is 8080, but can be

different based on the used configuration. For security reasons, by default, the API is not

exposed outside the cluster.

Detailed Information

60



Configure the API Endpoint

Apply the required changes in this section of the cluster configuration.

gateway:
  service:
    type: "NodePort"
    httpEndpoint:
      enabled: false
      port: 8080

Overview of the API Methods

Method Url Description

GET /rno/names Returns a list of all profile names with summary

information.

GET /rno/names/{name} Returns summary information for the requested

profile name.

DELETE /rno/names/{name} Deletes given profile name and all profiles

belonging to it.

GET /rno/names/{name}/profiles Returns summary information for all of the

profiles within a given profile name. Use the

?status=promoted  query parameter to see

only the promoted profile.

GET /rno/names/{name}/profiles

/{Id}

Returns summary information for a specific

profile.

DELETE /rno/names/{name}/profiles

/{Id}

Deletes a specific profile.

Optimizer Hub API

61



Method Url Description

GET /rno/names/{name}/export Exports all of the profiles in a specific profile

name. Each profile’s directory has the Id of the

VM that created it. The promoted profile,

meaning the profile that PLS sends to new

clients requesting the profile name, is stored in

profilePromoted.json . The README has

instructions for unifying the profile chunks into a

single profile file that can be used as a local

input to ReadyNow. You can see the iteration of

a given profile in the profileIteration property in

the profile’s profileInfo.json  file.

NOTE

The profile export fails if the

resulting data stream is larger

than 2GB. If this happens,

consider just exporting the

promoted profile using the

?status=promoted  query

parameter.

Optimizer Hub API

62



Method Url Description

POST /rno/names/{name}/import Imports a profile log to this instance of

Optimizer Hub. This API is mostly used for

moving a promoted profile from one Optimizer

Hub instance to another. The uploaded file

should be a zip archive in the format produced

by the /profile/export  API. Do not rename

directories in the profile structure or edit the

profile metadata.

NOTE
If the profile name already exists,

the import fails.

GET /rno/profiles/{id}/content Returns a profile by the specified id. You can use

the returned profile as an input for Prime JVM

for the ReadyNow ProfileLogIn flag value.

For example:

curl {endpoint}:{port}/rno/profiles/
{id}/content > {RETURNED_PROFILE}

-XX:ProfileLogIn={RETURNED_PROFILE}

GET /rno/statistics Returns service-wide statistics for this instance

of Cloud Native Compiler.

Monitoring Optimizer Hub

You can monitor your Optimizer Hub using the standard Kubernetes monitoring tools:

Prometheus and Grafana. Optimizer Hub components are already configured to expose

key metrics for scraping by Prometheus.

Monitoring Optimizer Hub

63



In your production systems, you will likely want to use your existing Prometheus and

Grafana instances to monitor Optimizer Hub. If you are just evaluating Optimizer Hub,

you may want to install a separate instance of Prometheus and Grafana to just monitor

your test instance of Optimizer Hub.

NOTE
Monitoring Optimizer Hub assumes you have a Prometheus and Grafana

available, or install one within your Kubernetes cluster.

Grafana Dashboard

You can find a Grafana configuration file cnc_dashboard.json  in opthub-install.zip.

Retrieving Optimizer Hub Logs

All Optimizer Hub components, including third-party ones, log some information to

stdout . These logs are very important for diagnosing problems.

You can extract individual logs with the following command:

kubectl -n my-opthub logs {pod}

However by default Kubernetes keeps only the last 10 MB of logs for every container,

which means that in a cluster under load the important diagnostic information can be

quickly overwritten by subsequent logs.

You should configure log aggregation from all Optimizer Hub components, so that logs

are moved to some persistent storage and then extracted when some issue needs to be

analyzed. You can use any log aggregation One suggested way is to use Loki. You can

query the Loki logs using the logcli tool.

Here are some common commands you can run to retrieve logs:

• Find out host and port where Loki is listening

export LOKI_ADDR=http://{ip-adress}:{port}

Monitoring Optimizer Hub

64

https://cdn.azul.com/optimizer_hub/1.8.2/opthub-install.zip
https://grafana.com/oss/loki/
https://grafana.com/docs/loki/latest/getting-started/logcli/


• Get logs of all pods in the selected namespace

logcli query --since 24h --forward --limit=10000 '{namespace="zvm-
dev-3606"}'

• Get logs of a single application in the selected namespace

logcli query --since 24h --forward --limit=10000 '{namespace="zvm-
dev-3606" app="compile-broker"}'

• Get logs of a single pod in the selected namespace

logcli query --since 24h --forward --limit=10000 '{namespace="zvm-
dev-3606",pod="compile-broker-5fd956f44f-d5hb2"}'

Extracting Compilation Artifacts

Optimizer Hub uploads compiler engine logs to the blob storage. By default only logs

from failed compilations are uploaded.

You can retrieve the logs from your blob storage, which uses the directory structure

<compilationId>/<artifactName> . The <compilationId>  starts with the VM-

Id  which you can find in connected-compiler-%p.log :

# Log command-line option
-Xlog:concomp=info:file=connected-compiler-%p.log::filesize
=500M:filecount=20

# Example:
[0.647s][info ][concomp] [ConnectedCompiler] received new VM-Id:
4f762530-8389-4ae9-b64a-69b1adacccf2

Troubleshooting Optimizer Hub

This page shows how to troubleshoot a misbehaving Optimizer Hub and any Azul Zulu

Prime Builds of OpenJDK (Azul Zulu Prime JVM) instances using Optimizer Hub.

Troubleshooting Optimizer Hub

65



Client VM Troubleshooting

My application running in a Cloud Native Compiler-enabled VM shows worse

performance than usually. What can I do?

1. Double-check VM arguments. Ensure that VM is started with -XX:OptHubHost=

parameter pointing to the address of the Optimizer Hub gateway.

See "Connecting a JVM to a Cloud Native Compiler" for more details on Optimizer

Hub-related VM parameters and "Installing Optimizer Hub" for finding out the

gateway address.

2. Enable Optimizer Hub logging in VM using -Xlog:concomp  parameter and look for

log messages that show the JVM connecting to and disconnecting from Optimizer

Hub.

◦ If the log says that the VM fails to connect to the service, check that the service is

up and running, check the network connectivity between JVM and service, and

check the value of -XX:OptHubHost= .

◦ If the log says that VM disconnects from the service soon after connecting, the log

should also give the reason for disconnecting. The most frequent reason for such

disconnects is a missing Compiler Engine on the service, indicated by the

FAILED_PRECONDITION  error code and message Compiler engine … not

found . See "Registering a New Compiler Engine" for more information.

◦ If the connection between the VM and service is established and does not break,

then proceed to item #3.

3. Collect VM GC log, open it in GCLA and see top-tier compilation statistics. Top-tier

compilation stats can also be seen in VM compilation log (

-XX:+PrintCompilation ).

◦ If stats show high top-tier compilation failure ratio, then it’s time to troubleshoot

Cloud Native Compiler.

◦ Write down the VM ID seen in the VM concomp log, it can be used to filter service

events related to this particular VM.

Troubleshooting Optimizer Hub

66



You can find the VM ID in connected-compiler-%p.log :

# Log command-line option
-Xlog:concomp=info:file=connected-compiler-%p.log::filesize
=500M:filecount=20

# Example:
[0.647s][info ][concomp] [ConnectedCompiler] received new VM-Id:
4f762530-8389-4ae9-b64a-69b1adacccf2

◦ Proceed to Cloud Native Compiler Server Troubleshooting.

4. Use the TTCOB metric to research possible problems.

An overloaded client (the JVM) can cause worse performance of Cloud Native

Compiler. This could be seen as a too high TTCOB metric. One example of such

overload is CPU saturation on JVM side. This can cause smaller amounts of

compilations being sent to Cloud Native Compiler but also a worse performance of

Cloud Native Compiler compilation because an overloaded JVM affects the

communication between the CNC Compiler and JVM itself.

◦ If TTCOB is over the threshold:

▪ Look at the "Compilations in progress" chart.

▪ If "Compilations" value hits the capacity, then the server is the bottleneck and

should be scaled.

▪ Otherwise the bottleneck is related to the per-VM limit on concurrent

compilations. It should be increased. Scaling server without increasing that per-

VM limit won’t help.

◦ If TTCOB is below threshold:

▪ How much below threshold is it?

▪ If there is a gap between the actual TTCOB and the threshold, then Optimizer

Hub can be downscaled proportionally to the gap.

Troubleshooting Optimizer Hub

67

#cloud_native_compiler_troubleshooting


▪ Otherwise relax and don’t touch anything.

5. If scaling compile-brokers doesn’t improve TTCOB, the culprit may be the cache.

A typical symptom is cache CPU usage hitting the ceiling, depending on the

workload. An example can be seen in this graph:

If that’s the case, one can modify simple sizing relationships to have more caches.

This is the relevant section in the values.yaml:

simpleSizing:
  relationships:
    brokersPerGateway: 30
    brokersPerCache: 20

Settings brokersPerCache to a lower value (e.g. 15) will result in having more cache

instances relative to compile-brokers.

I see occasional "compiler timeout" errors in service logs and/or grafana dashboard.

What’s that?

Every compilation on Cloud Native Compiler has a time limit. By default it’s 500

seconds.

• If that limit is exceeded, the first thing to check is network latency between VM and

Cloud Native Compiler using ping {opthub_host} . Latency should not exceed

single-digit milliseconds. If the latency is higher, CNC won’t deliver its best

performance. Make sure to locate VMs close enough to CNC.

Troubleshooting Optimizer Hub

68



• You can use the "VM rountrip" widget in the Grafana dashboard to detect if this limit

is exceeded.

• In rare cases there are very large compilations that actually require that long. If that’s

the case, compilation timeout can be changed by adding

-Dcompiler.timeout={N}  flag to compile-broker, where {N}  is the number in

seconds.

My application running in a Optimizer Hub-enabled VM behaves incorrectly or crashes.

What can I do?

1. Collect all VM logs and the hs_err*  file and send it to Azul for analysis.

2. Run the application without the -XX:OptHubHost  flag to verify that the problem is

specific to connecting to Optimizer Hub.

I sometimes see entries about failed compilations because of "ConnectedCompiler is

not yet ready", but I see it is compiling fine. Is that ok?

This may happen when running with SSL enabled. The VM keeps an open connection to

the service, but sometimes the connection can be reset or re-established. It may happen

that the VM tries to send a compilation request in the very moment. With SSL, the VM

and the service need to do a handshake to make sure the connection is trusted. It is

very quick, but it is possible the VM hits this small window. It is harmless as the

compilation is resubmitted the next moment.

Cloud Native Compiler Troubleshooting

JVM compilation log shows that top-tier compilations are started, but never finished.

What can I do?

This can be caused by one of these reasons:

• No compile-broker pods are running in the Optimizer Hub cluster. Make sure that at

least one compile-broker is up and running.

• Cloud Native Compiler has too many compilation requests enqueued due to too

Troubleshooting Optimizer Hub

69



many VMs connected and it takes too long to provide compiled code. To confirm,

check the "Compilation Queues" chart in Grafana. Increase the number of compile-

broker replicas.

I see occasional "vm unreachable" in service logs and/or grafana dashboard. What’s

that?

This is caused by the service’s inability to receive some information necessary for the

compilation from the JVM. It usually happens when the JVM disconnects from the

service for any reason, e.g. JVM termination or a network error. It’s harmless. The

service just skips the compilation and proceeds to the next one.

ReadyNow Orchestrator Troubleshooting

ReadyNow profile reading timed-out with pre-main exceeding 60 seconds.

In case of a service misconfiguration with the Optimizer Hub not being deployed, and

compilation.limit.per.vm  setting being set to a value higher than 0 , Prime may

attempt to use the service for compilations to no avail. It might take some time for

Prime to automatically switch to the local Falcon compiler. This can severely impact the

ability of ReadyNow to pre-compile methods before the application load is started thus

limiting the overall effect of ReadyNow.

Known Issues

• VM crashes when there is not enough memory available on the system. The exact

amount of memory needed depends on the environment and the application. If you

see VM crashing, please try freeing memory (e.g. killing some memory-hungry

processes) or moving to a machine with more memory.

Troubleshooting Optimizer Hub

70


	Optimizer Hub Documentation
	Table of Contents
	About Optimizer Hub
	Interaction Between Optimizer Hub and JVMs
	About Cloud Native Compiler
	JIT Optimization
	Falcon JIT

	About ReadyNow Orchestrator
	Key Strengths of ReadyNow Orchestrator

	Optimizer Hub Architecture Overview
	Architecture Overview
	Deployment Overview


	Optimizer Hub Release Notes
	Optimizer Hub 1.8.2
	New Features

	Optimizer Hub 1.8.1
	New Features
	Known Issues

	Optimizer Hub 1.8.0
	New Features
	Known Issues

	Cloud Native Compiler 1.7.1
	New Features

	Cloud Native Compiler 1.7.0
	New Features

	Cloud Native Compiler 1.6.3
	New Feature

	Cloud Native Compiler 1.6.2
	New Features
	Upgrade

	Cloud Native Compiler 1.6.1
	New Features
	Bug Fixes
	Known Issues

	Cloud Native Compiler 1.6.0
	New Features
	Bug Fixes
	Known Issues

	Cloud Native Compiler 1.5.0
	New Features
	Known Issues

	Cloud Native Compiler 1.4.0
	New Features
	Known Issues

	Cloud Native Compiler 1.3.0
	New Features
	Known Issues

	Cloud Native Compiler 1.2.0
	New Features

	Cloud Native Compiler 1.1.0
	New Features
	Known Issues

	Cloud Native Compiler 1.0.0
	New Features


	Optimizer Hub Installation Instructions
	Installing Optimizer Hub
	Supported Platforms
	Supported Kubernetes Environments

	Installing Optimizer Hub on Kubernetes
	Optimizer Hub Helm Charts
	Installing Optimizer Hub
	Configuring Persistent Storage
	Cleaning Up

	Installing Optimizer Hub on AWS Elastic Kubernetes Service
	Provisioning on EKS
	Setting Up an External Load Balancer
	Installing Optimizer Hub on EKS
	Configuring AWS S3 Storage
	Cleaning Up

	Installing Optimizer Hub on Microsoft Azure
	Configuring Azure Blob Storage

	Installing Optimizer Hub on Google Cloud
	Configuring Storage
	Configuring Compile Broker
	Configuring Gateway
	Configuring Cache

	Installing Optimizer Hub on Minikube
	Installing Minikube
	Installing Optimizer Hub
	Uninstalling Optimizer Hub from Minikube

	Upgrading Optimizer Hub
	Changed Values
	Upgrading to 1.8
	Upgrade From Specific Versions


	Configuring Optimizer Hub
	Optimizer Hub Generic Defaults
	Database Parameters
	Database Schema Paramaters
	Simple Sizing Paramaters
	SSL Parameters
	Storage Parameters

	Configuring the Active Optimizer Hub Services
	Install Only the ReadyNow Orchestrator
	Disabling Cloud Native Compiler on a Full Optimizer Hub Installation

	Configuring Optimizer Hub Host and Port
	Determining the Optimizer Hub Endpoint
	Specifying a Custom Compiler Engine Upload Port

	Configuring gRPC Proxy
	Disabling Envoy in Optimizer Hub

	Configuring Optimizer Hub with SSL Authentication
	Running Azul Zulu Prime JDK Clients with SSL

	Configuring the ReadyNow Orchestrator
	Duration Configuration
	Configuring Clean Up of Old Profile Logs
	ReadyNow Orchestrator Defaults

	Sizing and Scaling your Optimizer Hub Installation
	Scaling Overview
	Configuring Capacity
	Configuring Autoscaling


	JVM Connections to Optimizer Hub
	Connecting a JVM to Optimizer Hub
	Using the Cloud Native Compiler
	Cloud Native Compiler JVM Options
	Fallback to Local JIT Compilation
	Logging and SSL

	Registering a New Compiler Engine in Cloud Native Compiler
	Auto-Uploading Compiler Engines
	Inspecting the Installed Compiler Engines

	Using the ReadyNow Orchestrator
	Creating and Writing To a New Profile Name
	ReadyNow Orchestrator JVM Options
	Basic Profile Recording with Server Defaults
	Capping Profile Log Recording and Maximum Generations
	Using a Previous Profile as the Basis of a New Profile Recording


	Detailed Information
	Optimizer Hub API
	ReadyNow Orchestrator Admin API

	Monitoring Optimizer Hub
	Grafana Dashboard
	Retrieving Optimizer Hub Logs
	Extracting Compilation Artifacts

	Troubleshooting Optimizer Hub
	Client VM Troubleshooting
	Cloud Native Compiler Troubleshooting
	ReadyNow Orchestrator Troubleshooting
	Known Issues



