
Zing Virtual Machine Release
Notes

This document provides release information for Zing Virtual Machine
18.02.0.0

February 22, 2018

Table of Contents

Azul Systems Confidential and Proprietary 2

Table of Contents

Zing Virtual Machine Release Notes 1

Table of Contents 2

1 Zing Overview 3

2 Features and Updates 4

Advisory! 4

2.1 New Features and Updates 4

2.2 Features Added in Previous Releases 4

3 Zing Virtual Machine Resolved Issues 7

4 Zing Virtual Machine Known Issues 16

Legal Notice 18

Zing Release Notes

Azul Systems Confidential and Proprietary 3

1 Zing Overview
The Azul Systems® Zing® platform uses the Zing Virtual Machine (ZVM) to run Java™ technology-
based applications. In the Zing product, the Zing System Tools (ZST) component, installed on each
ZVM host system, manages the elastic and highly scalable sharedmemory resources.

Document Title Purpose Format

Zing Virtual Machine Release

Notes (this document)

Release information, including new ZVM

features, resolved issues, and known issues.
PDF

Zing System Tools Release

Notes

Release information about the latest available

version of ZST.
PDF

Zing System Requirements and

Compatibility References

List of Zing System Requirements including

Operating System, CPU, Memory, and Hardware

Disk Storage Space. Provides information about

Zing Component Version Compatibility and ZST/

Zing API Compatibility.

PDF

ZingGetting Started Guide

Provides reference information about how to

install Zing components, configure Zingmemory

management, and run your Java applications with

Zing.

PDF

Zing User's Guide

Provides detailed description of Zing installation,

memory configuration, using the Pool License

Server, running Java applications with Zing,

troubleshooting, and using additional tools and

utilities to improve performance of your Java

applications.

PDF

Zing Common Vulnerabilities and

Exposures List
List of CVE fixes integrated in this release. PDF

ZingMXBeans Javadoc Javadoc documentation for ZingMXBeans. PDF

2 Features and Updates

Azul Systems Confidential and Proprietary 4

2 Features and Updates

Advisory!

1. ZST 5.20.5 provides compatibility with the newly available fixes for the recently
reported Intel CPU kernel side-channel security flaws and is required for Zing to
operate on Linux distributions that have been updated to address these flaws by
adding kernel page table isolation (KPTI). To avoid problems, you should upgrade
your ZST to ZST 5.20.5 or higher as soon as possible. Our recommendation for best
practice in isolating changes independently is to update Zing to use ZST 5.20.5 and
verify your application launches and works, then apply your KPTI kernel update, and
recheck that your application launches and still works. Azul is tracking industry-wide
response to the recently reported side-channel security flaws. As changes to
different operating system distributions emerge, Azul will continue to provide
guidance on how to best accommodate those changes.

2. Azul recognizes the concern over a potential regression in Java's use of ZLib and
subsequent data decompression errors, as discussed here:
https://github.com/madler/zlib/issues/305. The Zing ZVM never shipped a public
release exhibiting this problem. However, a preventive change included in ZVM
17.11.0 ensures the problem will not occur in future releases.

2.1 New Features and Updates
ZVM 18.02.0.0 is compatible with ZST 5.15.0 and above.

Below is the list of new features and updates introduced in ZVM 18.02.0.0:

Compiler Statistics

Updates

This release introduces the following changes in compiler statistics
reporting:

l Adding total wait-in-queue time to compiler statistic reporting andGC

log records.

l Changing TotalAcutalTimeMS to TotalCPUTimeMS in GC log
records and compiler statistics.

Performance and

Stability Improvements
Zing 18.02.0.0 comes with several internal stability and performance fixes.

2.2 Features Added in Previous Releases
Zing 18.01.0.0

l Unlimited Cryptographic Policy is Enabled by Default.

l Providing Azul OEM Master License Key.

https://github.com/madler/zlib/issues/305

Zing Release Notes

Azul Systems Confidential and Proprietary 5

l Enhancements for gcLogAnalyser.

l Compiler Enhancements includingUsing Compile Stashing.

l Deprecation of Support for RHEL 5
Zing 17.12.0.0

l Enhance control of precompilation to allow control of each tier’s precompliation separately.

l Add support for uncounted loop safepoint removal.

l Add a command-line option that changes the threshold at which the OSR compiles are triggered.

l Enhance the gcLogAnalyser tool’s graph PNG file generator to automatically add html pages to:

1. Easily navigate the graphs in a set of PNG files using a web browser

2. Compare any two graphs in one view using a web browser

Zing 17.11.0.0

l Include JCE Jurisdiction Policy files.

l Set limit on array length.

l CodeCache flushing improvements.

l New Falcon inlining command-line option.

l ReadyNow! enhancements.
Zing 17.10.0.0

l Increase maximum heap size (-Xmx) supported by Zing from 2 TB to 8 TB.
Zing 17.08.0.0

l Eliminate a transaction latency problem.

l Support for ParallelClassLoaders.

l Multiple changes and improvements in the GC Log Analyser tool and ReadyNow!.

l Deprecation of the GPGCConcurrentMarkGlobalHandles command-line option.

l Add "update-alternatives" for Java and a symlink for easy access of Java binary.

Zing 17.06.0.0

l The ZST 5.20 that is included in the Zing Trial Program has two new behaviors. First, system-config-

zing-memory is run automatically after the installation of the ZST to configure the System Zing

Memory. Second, the default policy for reservation of memory used by the ZVM has been changed

from reserve-at-config (reserved when system-config-zing-memory is run) to reserve-at-launch

(reserved when the ZVM process is launched).

l Support for Stop-The-World (STW) garbage collection in the ZVM.

l Multiple changes and improvements in the GC Log Analyser tool.

l Enable CodeCache Flushing and support for ParallelClassLoaders.
Zing 17.03.0.0

2 Features and Updates

Azul Systems Confidential and Proprietary 6

l Falcon compiler becomes the default Tier 2 compiler for Zing (for Java SE 7 and 8) replacing C2.

l Multiple changes and improvements in the Zing monitoring tools.

l Many improvements of the ReadyNow! performance tuning tool.
Zing 16.12.0.0

l General Availability of the Falcon Compiler. Learn more about the Falcon specifics in the Zing User's

Guide.

l Adding the UseFastJNIAccessors option to the list of the unchangeable options.

l Adding the ability to process files that have GC log lines without any timestamp preceding the log line

label.
Zing 16.10.0.0

l Increased number of supported operating systems and kernels.

l Compiler Enhancements.

l Performance and Stability Improvements
Zing 16.07.0.0

l Intel TSX support

l Additions to the Garbage Collector output information

l Enhancements in the gcLogAnalyser tool

l Large number of supported operating systems and kernels

l Performance Improvements.
Zing 16.01.0.0

l Extended Java Heap Size up to 2 TB per JVM instance

l The Native Memory Tracking functionality includes invocation of Memory-tracking functions to record

allocations.

l New graphs are available in the gcLogAnalyser tool.

l Bug fixes.
Refer to the Zing System Requirements and Compatibility References for more information about the
supported operating systems and Zing component compatible versions.

Zing Release Notes

Azul Systems Confidential and Proprietary 7

3 Zing Virtual Machine Resolved Issues
The following table lists known issues that are resolved as of Zing Virtual Machine 18.02.0.0. The Bug
IDs listed are Azul internal reference numbers.

Bug ID
Release

Resolved
Description

13102 18.02.0.0
MapR default library loading incompatible with ReadyNow!. The fix
ensures that MapR 4+ works with ReadyNow! with default settings.

13154 18.02.0.0
ZVM crashes with no hs_err and zero size core file when run in
combination with AZ_CHEAP_MEMORY_SANITIZER=1.

10414 18.01.0.0
In the product version of the ZVM, restrict the set of command-line options
shown in ZVision's HotSpot Flags window to the available set of -XX
options. Previously, non-product options were also shown.

12521 18.01.0.0
Backport of JDK-8063086: Math.pow yields different results upon
repeated calls.

12629 18.01.0.0

The application threads waits to be notified by the collector until the end of
next new collection for allocations when they hit allocation failure.

The use of the newly introduced -
XX:GPGCMutatorSleepBeforeAllocRetryMS option (10ms by
default) makes the delayed to respond to the freed pages earlier and helps
in reducing the length of allocation delays seen by the application threads.

12428 17.12.1.0
Expressions with nested Math.pow() fail with the result Not-a-
Number error for some floating point values.

12767 17.12.1.0 Comodo root Certificate Authority is missing in cacerts files.

8606 17.12.0.0
Zing crashes if its command line contains only -Xms but no -Xmx, and -
Xms is larger than default max heap size (currently 1G). The fix ensures no
more such crashes happen.

11772 17.12.0.0
Zing tools do not work with anOEM license because the entry point
JAR file is loaded by bootstrap.

12010 17.11.1.0 ZVM garbage collector related process abort at C

3 Zing Virtual Machine Resolved Issues

Azul Systems Confidential and Proprietary 8

Bug ID
Release

Resolved
Description

[libjvm.so+0x29672c] GPGC_Layout::addr_to_
BasePageForSpace.

12461 17.11.1.0
ZVM Falcon compiler related process abort at C
[libjvm.so+0x58dca8] DolphinParser::reify_abstract_
state.

12492 17.11.1.0

Interpreter or other runtime ZVM abort following a deoptimization of Falcon
compiled code and an attempt to recompile and run the newly compiled
method. Internal root cause is Falcon compiler’s reuse of OopTable
indices.

8341 17.11.0.0
ZVM will not start if -Xmx and -Xms are both specified and have values
that are odd numbers.

11143 17.11.0.0
Unexpected use of the System.nanoTime()method in the Falcon

compiler.

11850 17.11.0.0
ZVM crashed in guarantee(secondary_supers()) failed:
Unitialized secondary supers during typecheck.

11896 17.11.0.0
Backport of JDK-6512830: Error: assert(tag_at(which).is_
unresolved_klass(), "Corrupted constant pool").

12131 17.11.0.0
Backport JDK-8075484: SocketInputStream.socketRead0 can
hang even with soTimeout set.

12132 17.11.0.0
Backport JDK-8178536: OOM ERRORS + SERVICE-THREAD TAKES
A PROCESSOR TO 100%.

10064 17.10.0.0
ZVM crashed due to incorrect deoptimization in clone intrinsic

implementation.

10076 17.08.0.0
Creation of methodstubs (for C2i) for methods for all the loaded classes
causes application to run out of code cache.

10567 17.08.0.0
ZVM crashed in src/cpu/x86/vm/interpreterRT_x86.cpp:1085
with Unimplemented() error.

Zing Release Notes

Azul Systems Confidential and Proprietary 9

Bug ID
Release

Resolved
Description

10882 17.08.0.0

Falcon compiler does not respect
DynamicBranchEliminationLevel of 0 or 1.

The fix makes Falcon to distinguishmore levels.

10907 17.08.0.0
RMI Registry ignores depth limit pattern specified for the
registryFilter.

11612 17.06.2.0 A bug in a function call in the optimized intrinsic code for AES.

10043 17.06.0.0
Using the -usedatex command-line option together with the Set Time
Range option of the GC Log Analyser tool resulted in empty graphs.

10298 17.06.0.0
INVOKEINTERFACE called on the java.lang.Objectmethod in ASM-
generated byte code fails after several iterations.

10428 17.06.0.0
The use of the date/time X-axis of the GC Log Analyser tool encounters
error caused by duplicate elapsed times for items in a dataset.

10440 17.06.0.0
Warning counters differ in jstat -profile and -profileerrors output
of the ReadyNow! tool.

10499 17.03.3.0
Internal Error at ciObject.hpp:

compiler_assert(is_instance()) failed: bad cast :

10353 17.03.3.0

Crash due to an unexpected error detected by Java Runtime Environment:

guarantee(lbl == _ex_labels->at(idx)) failed: single
handler bci given 2 different rel_pc mappings.

10334 17.03.3.0 Scala 2.12 fails with bytecode error.

10174 17.03.3.0
Crash with the error message:

LLVM fatal error: Unable to allocate section memory!

10297 17.03.2.0

Crash with the following problematic frame:
J (C2)
com.mchange.v2.c3p0.impl.NewPooledConnection.carefulCheckHoldability
(Ljava/sql/Connection;)I

3 Zing Virtual Machine Resolved Issues

Azul Systems Confidential and Proprietary 10

Bug ID
Release

Resolved
Description

9970 17.03.2.0

Zing crashes with the following error:

LLVM fatal error: Do not know how to split the
result of this operator!

10156 17.03.1.0
Toomany recompilations on a particular method results in the same being
marked "do not-compile any longer".

4702 17.03.0.0 Use of the OnOutOfMemoryError flag triggers a crash.

8298 16.12.3.0
New generation relocation aborts can lead to Java heap live set growth.
This affects ZVM versions 16.01.0.0 through ZVM 16.12.2.

9463 16.12.3.0

Frequent New GC cycles can lead to Java heap live set growth. When the
New GC intercycle time is lower than the promotion threshold, objects can
be retained in the new generation causing a growth in the live set. This
affects ZVM versions 15.09.0.0 through ZVM 16.12.2.

7911 16.12.2.0
Crash with the following problematic frame: C
[libjvm.so+0x38d1c2] jvmti_GetTime+0x62.

9050 16.12.2.0

On someRHEL 5 systems, where the command: find
/sys/devices/system/cpu -name thread_siblings produces
a list of files that is in descending numerical order by a CPU directory
name, ThreadOpt will exit with an IndexOutOfBoundsException.

9086 16.12.1.0 Applications can hang when ZVM runs with the Falcon compiler.

8655 16.12.0.0
Crash due to usage of the +UseFastJNIAccessors option. The option
has not been implemented yet. To avoid crashing the optionmarked as
unchangeable.

6520 16.12.0.0
No timestamp generated with the +PrintGCDetails option alone on

command line causes gcLogAnalyser "unable to read".

8561 16.10.1.0

ZVM can exit due to code cache exhaustion by Javamonitors.
Applications whichmake heavy use of Javamonitors either due to lock
contention or wait/notify mechanisms, can potentially see a high footprint
related tomonitors in the code cache.

Zing Release Notes

Azul Systems Confidential and Proprietary 11

Bug ID
Release

Resolved
Description

8224 16.10.0.0
A stray C2 thread is running at 100% CPU without making any forward

progress.

8071 16.07.1.0

C-Heap Leak happens in raw-monitor creation. RawMonitors are leaking
semaphore objects which are eagerly created during VMLock creation.

The fix includes releasing sem_t objects and calling sem_destroy.

7756 16.07.1.0
ZVM crashes with the following problematic frame:
[libjvm.so+0x318ab3] java_lang_Class::as_klassOop
(oopDesc*)+0x23.

2820 16.07.1.0

Nashorn benchmark stalls after encountering data error processing profile
log error (error: 101) while running Nashorn benchmarks with ReadyNow!
enabled. The fix adds supports for dealing with Nashorn and eliminates
this issue.

4758 16.07.0.0

Additional control flags introduced to prevent startup crashes due to usage
of ProfileLogIn. Following are those control flags:

ProfileUsePersistedInstructionData

ProfileProactivelyCompileC1

ProfileProactivelyCompileC2

4811 16.07.0.0
jstat -profile (and -profileerrors) returned unresolved
symbols when ProfileLogIn is not specified. The fix now ensures that
zeros will be printed instead of unresolved symbols.

5803 16.07.0.0
Wrong class was being loaded only when using the ProfileLogIn
profile. The fix implements safemode for ReadyNow to avoid an improper
speculative load that might produce amisleading and worrisome report.

6300 16.07.0.0
Removed non-relevant data from graphs (Old Gen Collector: App Threads
Delay and Pages Promoted).

6778 16.07.0.0
ReadyNow failed to recognize the generated Lambda classes as
generated. The fix implements safemode for ReadyNow to use when
ReadyNow's generated class heuristics do not work for a class generator.

7422 16.07.0.0 Enabling ProfileLiveObjects seems to increaseGC cycle durations

3 Zing Virtual Machine Resolved Issues

Azul Systems Confidential and Proprietary 12

Bug ID
Release

Resolved
Description

significantly. The fix implements an improved hash function along with
few other optimizations resulting in reducedGC cycle durations.

7434 16.07.0.0

The default value of MlockLevel has been changed to 1 from 0:

MlockLevel=0 – do not attempt any mlocks

MLockLevel=1 – quietly attempt to mlock libjvm.so

7451 16.07.0.0
Crash with the following problematic frame: StubRoutines::find_
SEGV_continuation_address.

7654
16.07.0.0,

16.01.7.0

Resolving an orphaned FinalLive objects through JNI weak handle
during ConcurrentRefProcessing could lead to the following crash:

guarantee(loop_count < size) failed: should have
found the relocation record

7422 16.01.7.0
Enabling ProfileLiveObjects seems to increaseGC cycle durations
significantly. The fix implements an improved hash function along with
few other optimizations resulting in reducedGC cycle durations.

5547 16.01.7.0

When running on someCassandrs nodes, the following enexpected error
has been detected:

guarantee(GPGC_Marks::is_any_marked_strong_live
(obj)) failed: NewGen oop at final clear not strong
live

6907 16.01.6.0

Crash due to an internal error:

guarantee(loop_count < size) failed: should have
found the relocation record

The fix ensures that a class of a Java object is treated as StrongLive
even if that object is itself only FinalLive. This guarantees that the
classes of FinalLive objects cannot be orphaned before the
StrongLivemark-through of FinalLive referents, and will ensure their
relocation.

6058,

6108 16.01.5.0

High GC pauses due to JVM code being paged out. The fix introduces a
new command-line option MlockLevel, which can be tuned. If the flag is
set without a value, the default ensures no page JVM code page-outs. The
option specifies one of four mlock strategies:

Zing Release Notes

Azul Systems Confidential and Proprietary 13

Bug ID
Release

Resolved
Description

1. Do not attempt any mlock (EARLY)
2. mlock libjvm.so text region (LATE)
3. mlockall (EARLY)
4. mlockall (LATE)

Example: use -XX:+MlockLevel=1001 to attempt strategy 1 while
reporting verbosely. This option should be used only with guidance
of Azul Support.

6258 16.01.5.0
A random error code is being returned from the JDK method:

java.util.prefs.FileSystemPreferences.lockFile0().

6436 16.01.5.0
In ZVision, clicking on the tty_lock entry in zvision -> threads ->
contention causes a crash.

6631 16.01.5.0
+MinimizeJNICriticalLock causes an
IllegalArgumentException in
java.util.zip.Deflater.deflate.

6898 16.01.5.0
Nginx-Clojure does not work with Zing because the linker option -Wl,-
soname,libjvm.so has not been passed and the libjvm.so library
cannot be found.

7071 16.01.5.0 Zing VM can crash at very early stages due to lack of system resources.

6542 16.01.3.0
Applications that use large chunks(>100s of MBs) of
DirectByteBuffer could potentially face high TTSP times in
New/OldGC pause3 because of the deallocation of these buffers.

6791 16.01.3.0 NullPointerException caused by wrong code generated from C2.

6938 16.01.3.0

Thread.sleep can sleep ~30% longer than specified when the Intel
pstate driver is enabled. The pstate driver can be disabled to workaround
this problem with older ZVMs.

You can determine whether the pstate driver has been enabled by
checking /sys/devices/system/cpu/cpu0/cpufreq/scaling_
driver for the string “intel_pstate”.

6956 16.01.3.0 A race condition in CodeCache::GPGC_unlink can cause a crash

3 Zing Virtual Machine Resolved Issues

Azul Systems Confidential and Proprietary 14

Bug ID
Release

Resolved
Description

when there aremultiple GenPauselessOldThreads. This affects ZVM
versions 16.01.0.0, 16.01.1.0, and 16.01.2.0. For these ZVMs, the
workaround is to set -XX:GenPauselessOldThreads=1 but this can
cause a spike in Old GC cycle times for applications with a large live set.

6736 16.01.2.0
Fatal error in nativemethod: JDWP PushLocalFrame: Unable to
push JNI frame, jvmtiError=AGENT_ERROR_OUT_OF_MEMORY
(188).

6124 16.01.1.0
Crash in generated code of the followingmethod:
it.unimi.dsi.fastutil.ints.IntRBTreeSet.add.

6370 16.01.1.0
GC log file SYSINFO line reports Page Cache active(file) value for the
Page Cache active(anon) value.

2699 16.01.0.0
New intrinsic for BigInteger.multiplToLen() for improved
BigInteger performance.

3178 16.01.0.0
The new UseCRC32Intrinsics option for improved CRC32
performance.

3910 16.01.0.0
New intrinsics for the squareToLen and mulAddmethods in
BigInteger for improved BigInteger performance.

5002 16.01.0.0
The UseSuperWord ZVM option is turned on by default. It enables up to
16-byte vectorization.

5437 16.01.0.0
Memory-tracking functions to record the use of the nativememory. For
more details, see the NativeMemory Tracking section of the Zing
16.01.0.0 User Guide.

5478 16.01.0.0
As of ZVM 14.09.0.0, a difference in the version of libstdc++ on the
system and the libstdc++ version that is statically linked into libjvm could
cause a crash due tomalloc corruption.

5626 16.01.0.0 The printir compiler command dumps out C2 node IR phase by phase
for a specific Javamethod.

5663 16.01.0.0 Crash with the following problematic frame: AddNode::Ideal

Zing Release Notes

Azul Systems Confidential and Proprietary 15

Bug ID
Release

Resolved
Description

(PhaseGVN*, bool).

5858 16.01.0.0
When the JVM core dumps, the hs error file is incorrectly reporting
SCHED_IDLE threads as UNKNOWN.

5754 16.01.0.0 Crash with the following problematic frame: jvm_exception_handler.

5791 16.01.0.0 VM takes a long time to shutdown due to background page scrubbing.

6142 16.01.0.0
Crash with the following problematic frame: GraphKit::add_
exception_states_from(JVMState*).

5467 15.09.1.0
Crash in Java_sun_font_ FreetypeFontScaler_
disposeNativeScaler().

4 Zing Virtual Machine Known Issues

Azul Systems Confidential and Proprietary 16

4 Zing Virtual Machine Known Issues
The following table lists known issues that are known issues as of Zing Virtual Machine 18.02.0.0. The
Bug IDs listed are Azul internal reference numbers.

Bug

ID

Release

Known
Description

6318 15.09.0.0

When using reserve-at-launch, youmay see an exception such as
"MemoryUsage ERROR: initialReserved 0 size -4738568192
used -4736471040" in ZingMXBean calls that use MemoryUsage objects for
System Linux Memory. As of ZVM 16.01.0.0, the probability of seeing this error
has been reduced. If the error is seen, it can safely be ignored.

5348 15.09.0.0

WebSphere fails to launch when using -XX:+UseZingMXBeans.Workaround:
Set the following by using server.xml orWAS admin console (note the empty
value for the system property):

genericJvmArguments="-XX:+UseZingMXBeans -
Djavax.management.builder.initial= "

2924
all Zing

releases

Loop predicate and loop limit check code problem.

(1) The java spec says explicitly that operations on integers can overflow and no
exception will be thrown. Indeed, unlike the C++ spec that says integer overflow
is undefined, java says integer overflow is required to happen.

(2) Java coding guidelines always point out that using Integer.MAX_VALUE in
comparison expressions is dangerous programming. Especially if it is used in a
loop bound.

(2a) This loop will terminate because eventually i will be equal to Integer.MAX_
VALUE: for (int i=0; i<Integer.MAX_VALUE; i+=1) { ... }

(2b) This loop will never terminate, because i will overflow: for (int i=0;
i<Integer.MAX_VALUE; i+=2) { ... }

(3) Zing will sometimes terminate the loop in (2b).

Note: -XX:+DisableLoopOptimizations will often avoid the problem but
is is only recommend as a workaround on a per-method basis.

-XX:CompileCommand='disableloopopts,classname::method'

3958 15.09.0.0

JBoss7 throws an exception on startup with -XX:+UseZingMXBeans flag.
Workaround: Add the following lines to the standalone.conf file:
JAVA_OPTS="$JAVA_OPTS -
Djava.util.logging.manager=org.jboss.logmanager.LogManager"

Zing Release Notes

Azul Systems Confidential and Proprietary 17

Bug

ID

Release

Known
Description

JAVA_OPTS="$JAVA_OPTS -
Xbootclasspath/p:../modules/org/jboss/logmanager/main/jboss-logmanager-
1.2.0.GA.jar:../modules/org/jboss/logmanager/log4j/main/jboss-logmanager-
log4j-1.0.0.GA.jar:../modules/org/apache/log4j/main/log4j-1.2.16.jar"

2602 14.09.0.0
ZVM running in environment with multiple scheduling policies, RR, BATCH, and
OTHER, encounters checkpoint sync timeout in thread running with BATCH
policy.

Legal Notice

Azul Systems Confidential and Proprietary 18

Legal Notice
Published, February 22, 2018

© 2005–2018, Azul Systems, Incorporated, 385Moffett Park Drive, Suite 115, Sunnyvale, CA 94089.
All rights reserved.

Products and specifications discussed in this document may reflect future versions and are subject to
change without notice. Azul Systems assumes no responsibility or liability for any errors or
inaccuracies that may appear in the informational content contained in this guide.

No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of
Azul Systems. Please note that the content in this document is protected under copyright law even if it
is not distributed with software that includes an end user license agreement.

Azul Systems, Azul Zing, Zing, and the Azul logo are trademarks or registered trademarks of Azul
Systems, Inc. Linux is a registered trademark of Linus Torvalds. Red Hat is the property of Red Hat,
Inc. Java is a registered trademark of Oracle Corporation. Microsoft andWindows are registered
trademarks of Microsoft Corporation. Other marks are the property of their respective owners and are
used here only for identification purposes.

	Zing Virtual Machine Release Notes
	Table of Contents
	1 Zing Overview
	2 Features and Updates
	Advisory!
	2.1 New Features and Updates
	2.2 Features Added in Previous Releases

	3 Zing Virtual Machine Resolved Issues
	4 Zing Virtual Machine Known Issues
	Legal Notice

